Index
All Classes and Interfaces|All Packages
E
- EmptyMatrix - Class in mklab.JGNN.core.empty
-
A
Matrix
without data that contains only the correct dimension names and sizes. - EmptyMatrix(long, long) - Constructor for class mklab.JGNN.core.empty.EmptyMatrix
-
Initializes an
EmptyMatrix
of given dimensions. - EmptyTensor - Class in mklab.JGNN.core.empty
-
A
Tensor
without data that contains only the correct dimension names and sizes. - EmptyTensor() - Constructor for class mklab.JGNN.core.empty.EmptyTensor
-
Initializes an
EmptyTensor
of zero size. - EmptyTensor(long) - Constructor for class mklab.JGNN.core.empty.EmptyTensor
-
Initializes an
EmptyTensor
of the given size. - endTape() - Method in class mklab.JGNN.nn.operations.LSTM
- enter() - Method in class mklab.JGNN.core.Memory.Scope
- epochs - Variable in class mklab.JGNN.adhoc.ModelTraining
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessCol
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessRow
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.Diagonal
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.SparseMatrix
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapCols
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapRows
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.Tensor
-
Provides an estimation for the non-zero number of elements stored in the tensor, where this number is equal to the size for dense tensors, but equal to the actual number of non-zero elements for sparse tensors.
- estimateNumNonZeroElements() - Method in class mklab.JGNN.core.tensor.SparseTensor
- evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.Accuracy
- evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.BinaryCrossEntropy
- evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.CategoricalCrossEntropy
- evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.Loss
-
Provides a numerical evaluation of a loss function, so that lower values correspond to better predictions.
- evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
- exit() - Method in class mklab.JGNN.core.Memory.Scope
- Exp - Class in mklab.JGNN.nn.activations
-
Implements a
NNOperation
that performs an element-by-element exponential transformation of its one input tensor. - Exp() - Constructor for class mklab.JGNN.nn.activations.Exp
- expMinusOne() - Method in class mklab.JGNN.core.tensor.DenseTensor
- expMinusOne() - Method in class mklab.JGNN.core.Tensor
-
Computes the exponential minus 1 of tensor elements.
- external(Tensor, Tensor) - Static method in class mklab.JGNN.core.Matrix
-
Produces the external product of two tensors.
- eye(long) - Static method in class mklab.JGNN.core.Matrix
-
Creates a sparse unit matrix.
All Classes and Interfaces|All Packages