Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

E

EmptyMatrix - Class in mklab.JGNN.core.empty
A Matrix without data that contains only the correct dimension names and sizes.
EmptyMatrix(long, long) - Constructor for class mklab.JGNN.core.empty.EmptyMatrix
Initializes an EmptyMatrix of given dimensions.
EmptyTensor - Class in mklab.JGNN.core.empty
A Tensor without data that contains only the correct dimension names and sizes.
EmptyTensor() - Constructor for class mklab.JGNN.core.empty.EmptyTensor
Initializes an EmptyTensor of zero size.
EmptyTensor(long) - Constructor for class mklab.JGNN.core.empty.EmptyTensor
Initializes an EmptyTensor of the given size.
endTape() - Method in class mklab.JGNN.nn.operations.LSTM
 
enter() - Method in class mklab.JGNN.core.Memory.Scope
 
epochs - Variable in class mklab.JGNN.adhoc.ModelTraining
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessCol
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessRow
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.Diagonal
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.SparseMatrix
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapCols
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapRows
 
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.Tensor
Provides an estimation for the non-zero number of elements stored in the tensor, where this number is equal to the size for dense tensors, but equal to the actual number of non-zero elements for sparse tensors.
estimateNumNonZeroElements() - Method in class mklab.JGNN.core.tensor.SparseTensor
 
evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.Accuracy
 
evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.BinaryCrossEntropy
 
evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.CategoricalCrossEntropy
 
evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.Loss
Provides a numerical evaluation of a loss function, so that lower values correspond to better predictions.
evaluate(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
 
exit() - Method in class mklab.JGNN.core.Memory.Scope
 
Exp - Class in mklab.JGNN.nn.activations
Implements a NNOperation that performs an element-by-element exponential transformation of its one input tensor.
Exp() - Constructor for class mklab.JGNN.nn.activations.Exp
 
expMinusOne() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
expMinusOne() - Method in class mklab.JGNN.core.Tensor
Computes the exponential minus 1 of tensor elements.
external(Tensor, Tensor) - Static method in class mklab.JGNN.core.Matrix
Produces the external product of two tensors.
eye(long) - Static method in class mklab.JGNN.core.Matrix
Creates a sparse unit matrix.
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages