Index
All Classes and Interfaces|All Packages
B
- BatchData - Class in mklab.JGNN.adhoc
- BatchData(List<Tensor>, List<Tensor>) - Constructor for class mklab.JGNN.adhoc.BatchData
- BatchOptimizer - Class in mklab.JGNN.nn.optimizers
-
Wraps an
Optimizer
by accumulating derivatives and callingOptimizer.update(Tensor, Tensor)
with the average derivative after a fixed number of accumulations. - BatchOptimizer(Optimizer) - Constructor for class mklab.JGNN.nn.optimizers.BatchOptimizer
-
Initializes a
BatchOptimizer
that accumulates derivatives and updates them only whenBatchOptimizer.updateAll()
is called. - BatchOptimizer(Optimizer, long) - Constructor for class mklab.JGNN.nn.optimizers.BatchOptimizer
-
Initializes a
BatchOptimizer
that accumulates derivatives and updates them withBatchOptimizer.updateAll()
after every fixed number of updates. - Benchmarks - Class in Unnamed Package
- Benchmarks() - Constructor for class Benchmarks
- BinaryCrossEntropy - Class in mklab.JGNN.nn.loss
-
Implements a binary cross-entropy
Loss
.
For more than one output dimensions useCategoricalCrossEntropy
- BinaryCrossEntropy() - Constructor for class mklab.JGNN.nn.loss.BinaryCrossEntropy
-
Initializes binary cross entropy with 1.E-12 epsilon value.
- BinaryCrossEntropy(double) - Constructor for class mklab.JGNN.nn.loss.BinaryCrossEntropy
-
Initializes binary cross entropy with and epsilon value to bound its outputs in the range [log(epsilon), -log(epsilon)] instead of (-inf, inf).
All Classes and Interfaces|All Packages