Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

C

cache() - Method in class mklab.JGNN.nn.pooling.Sort
 
cast(Class<Type>) - Method in class mklab.JGNN.core.Tensor
Performs the equivalent of Java's typecasting that fits in functional interfaces.
CategoricalCrossEntropy - Class in mklab.JGNN.nn.loss
Implements a categorical cross-entropy Loss.
For binary classification of one output use BinaryCrossEntropy.
CategoricalCrossEntropy() - Constructor for class mklab.JGNN.nn.loss.CategoricalCrossEntropy
Initializes categorical cross entropy with 1.E-12 epsilon value.
CategoricalCrossEntropy(double) - Constructor for class mklab.JGNN.nn.loss.CategoricalCrossEntropy
Initializes categorical cross entropy with and epsilon value to bound its outputs in the range [log(epsilon), -log(epsilon)] instead of (-inf, inf).
Citeseer - Class in mklab.JGNN.adhoc.datasets
Downloads and constructs the Citeseer node classification Dataset.
Citeseer() - Constructor for class mklab.JGNN.adhoc.datasets.Citeseer
 
classes() - Method in class mklab.JGNN.adhoc.Dataset
Retrieves a converter that maps class names to label dimentions.
classification - package classification
 
classify() - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
Adds a classification layer that gather the number of inputs nodes and applies softmax on all of them.
clearPrediction() - Method in class mklab.JGNN.nn.NNOperation
 
column - Variable in class mklab.JGNN.core.matrix.ColumnRepetition
 
ColumnRepetition - Class in mklab.JGNN.core.matrix
Defines a matrix whose columns are all a copy of a Tensor.
ColumnRepetition(long, Tensor) - Constructor for class mklab.JGNN.core.matrix.ColumnRepetition
Instantiates a matrix repeating a tensor to be treated as a column.
ColumnRepetition.Repeat1DIterator - Class in mklab.JGNN.core.matrix
 
ColumnRepetition.Repeat2DIterator - Class in mklab.JGNN.core.matrix
 
compare(long, long, Tensor, Matrix) - Method in class mklab.JGNN.nn.pooling.Sort
 
Complement - Class in mklab.JGNN.nn.operations
Implements a NNOperation that performs the operation 1-x for its simple input x.
Complement() - Constructor for class mklab.JGNN.nn.operations.Complement
 
concat(int) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
Concatenates horizontally the output of a number of given layers, starting from the last one and going backwards.
concat(int) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
Concatenates horizontally the output of a number of given layers, starting from the last one and going backwards.
Concat - Class in mklab.JGNN.nn.operations
Implements a NNOperation that concatenates its two matrix inputs.
Concat() - Constructor for class mklab.JGNN.nn.operations.Concat
 
config(String, double) - Method in class mklab.JGNN.adhoc.ModelBuilder
Declares a configuration hyperparameter, which can be used to declare matrix and vector parameters during ModelBuilder.operation(String) expressions.
config(String, double) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
 
config(String, double) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
 
config(String, double) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
 
config(String, String) - Method in class mklab.JGNN.adhoc.ModelBuilder
Applies ModelBuilder.config(String, double) where the set value is obtained from another configuration hyperaparameter.
config(String, String) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
 
configFrom(ModelBuilder) - Method in class mklab.JGNN.adhoc.ModelTraining
Retrieves the learning rate (lr), epochs, batches, and patience parameters from the configurations of a
constant(String, double) - Method in class mklab.JGNN.adhoc.ModelBuilder
Declares a non-learnable constant component with the given name.
constant(String, double) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
 
constant(String, double) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
 
constant(String, double) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
 
constant(String, Tensor) - Method in class mklab.JGNN.adhoc.ModelBuilder
Declares a non-learnable constant component with the given name.
constant(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
 
constant(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
 
constant(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
 
Constant - Class in mklab.JGNN.nn.inputs
Implements a NNOperation that holds a constant tensor.
Constant(Tensor) - Constructor for class mklab.JGNN.nn.inputs.Constant
Creates a constant holding a tensor.
contains(Object) - Method in class mklab.JGNN.adhoc.IdConverter
Checks whether the object has been registered with IdConverter.getOrCreateId(Object).
copy() - Method in class mklab.JGNN.core.Tensor
Creates a Tensor.zeroCopy() and transfers to it all potentially non-zero element values.
Cora - Class in mklab.JGNN.adhoc.datasets
Downloads and constructs the Cora node classification Dataset.
Cora() - Constructor for class mklab.JGNN.adhoc.datasets.Cora
 
countTapeSources - Variable in class mklab.JGNN.nn.NNOperation.ThreadData
 
createFirstState() - Method in class mklab.JGNN.nn.operations.LSTM
 
createForwardValidity(List<Tensor>) - Method in class mklab.JGNN.adhoc.ModelBuilder
Asserts that a forward run of the architecture is valid given some input data.
createGraphs(int) - Method in class graphClassification.TrajectoryData
 
createTimeAdjacency(int) - Method in class graphClassification.TrajectoryData
 
createTrajectory(int) - Method in class graphClassification.TrajectoryData
 
crossEntropy(double, double) - Static method in interface mklab.JGNN.core.util.Loss
A cross entropy loss for one sample computes as -label*log(output) -(1-label)*log(1-output).
crossEntropyDerivative(double, double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of the Loss.crossEntropy(double, double) loss.
crossEntropyDerivativeCategorical(double, double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of the #crossEntropyCategorical(double, double) loss.
crossEntropySigmoidDerivative(double, double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of crossEntropy(sigmoid(x), label) with respect to x.
crossEntropyTanhDerivative(double, double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of crossEntropy(tanh(x), label) with respect to x.
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages