Index
All Classes and Interfaces|All Packages
C
- cache() - Method in class mklab.JGNN.nn.pooling.Sort
- cast(Class<Type>) - Method in class mklab.JGNN.core.Tensor
-
Performs the equivalent of Java's typecasting that fits in functional interfaces.
- CategoricalCrossEntropy - Class in mklab.JGNN.nn.loss
-
Implements a categorical cross-entropy
Loss
.
For binary classification of one output useBinaryCrossEntropy
. - CategoricalCrossEntropy() - Constructor for class mklab.JGNN.nn.loss.CategoricalCrossEntropy
-
Initializes categorical cross entropy with 1.E-12 epsilon value.
- CategoricalCrossEntropy(double) - Constructor for class mklab.JGNN.nn.loss.CategoricalCrossEntropy
-
Initializes categorical cross entropy with and epsilon value to bound its outputs in the range [log(epsilon), -log(epsilon)] instead of (-inf, inf).
- Citeseer - Class in mklab.JGNN.adhoc.datasets
-
Downloads and constructs the Citeseer node classification
Dataset
. - Citeseer() - Constructor for class mklab.JGNN.adhoc.datasets.Citeseer
- classes() - Method in class mklab.JGNN.adhoc.Dataset
-
Retrieves a converter that maps class names to label dimentions.
- classification - package classification
- classify() - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
-
Adds a classification layer that gather the number of inputs nodes and applies softmax on all of them.
- clearPrediction() - Method in class mklab.JGNN.nn.NNOperation
- column - Variable in class mklab.JGNN.core.matrix.ColumnRepetition
- ColumnRepetition - Class in mklab.JGNN.core.matrix
-
Defines a matrix whose columns are all a copy of a
Tensor
. - ColumnRepetition(long, Tensor) - Constructor for class mklab.JGNN.core.matrix.ColumnRepetition
-
Instantiates a matrix repeating a tensor to be treated as a column.
- ColumnRepetition.Repeat1DIterator - Class in mklab.JGNN.core.matrix
- ColumnRepetition.Repeat2DIterator - Class in mklab.JGNN.core.matrix
- compare(long, long, Tensor, Matrix) - Method in class mklab.JGNN.nn.pooling.Sort
- Complement - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that performs the operation 1-x for its simple input x. - Complement() - Constructor for class mklab.JGNN.nn.operations.Complement
- concat(int) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
-
Concatenates horizontally the output of a number of given layers, starting from the last one and going backwards.
- concat(int) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
-
Concatenates horizontally the output of a number of given layers, starting from the last one and going backwards.
- Concat - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that concatenates its two matrix inputs. - Concat() - Constructor for class mklab.JGNN.nn.operations.Concat
- config(String, double) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a configuration hyperparameter, which can be used to declare matrix and vector parameters during
ModelBuilder.operation(String)
expressions. - config(String, double) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- config(String, double) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- config(String, double) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
- config(String, String) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Applies
ModelBuilder.config(String, double)
where the set value is obtained from another configuration hyperaparameter. - config(String, String) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- configFrom(ModelBuilder) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Retrieves the learning rate (lr), epochs, batches, and patience parameters from the configurations of a
- constant(String, double) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a non-learnable constant component with the given name.
- constant(String, double) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- constant(String, double) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- constant(String, double) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
- constant(String, Tensor) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a non-learnable constant component with the given name.
- constant(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- constant(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- constant(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
- Constant - Class in mklab.JGNN.nn.inputs
-
Implements a
NNOperation
that holds a constant tensor. - Constant(Tensor) - Constructor for class mklab.JGNN.nn.inputs.Constant
-
Creates a constant holding a tensor.
- contains(Object) - Method in class mklab.JGNN.adhoc.IdConverter
-
Checks whether the object has been registered with
IdConverter.getOrCreateId(Object)
. - copy() - Method in class mklab.JGNN.core.Tensor
-
Creates a
Tensor.zeroCopy()
and transfers to it all potentially non-zero element values. - Cora - Class in mklab.JGNN.adhoc.datasets
-
Downloads and constructs the Cora node classification
Dataset
. - Cora() - Constructor for class mklab.JGNN.adhoc.datasets.Cora
- countTapeSources - Variable in class mklab.JGNN.nn.NNOperation.ThreadData
- createFirstState() - Method in class mklab.JGNN.nn.operations.LSTM
- createForwardValidity(List<Tensor>) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Asserts that a forward run of the architecture is valid given some input data.
- createGraphs(int) - Method in class graphClassification.TrajectoryData
- createTimeAdjacency(int) - Method in class graphClassification.TrajectoryData
- createTrajectory(int) - Method in class graphClassification.TrajectoryData
- crossEntropy(double, double) - Static method in interface mklab.JGNN.core.util.Loss
-
A cross entropy loss for one sample computes as -label*log(output) -(1-label)*log(1-output).
- crossEntropyDerivative(double, double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of the
Loss.crossEntropy(double, double)
loss. - crossEntropyDerivativeCategorical(double, double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of the
#crossEntropyCategorical(double, double)
loss. - crossEntropySigmoidDerivative(double, double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of
crossEntropy(sigmoid(x), label)
with respect to x. - crossEntropyTanhDerivative(double, double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of
crossEntropy(tanh(x), label)
with respect to x.
All Classes and Interfaces|All Packages