Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

S

sample() - Method in class mklab.JGNN.core.distribution.Normal
 
sample() - Method in interface mklab.JGNN.core.Distribution
Retrieves a new sample from the distribution.
sample() - Method in class mklab.JGNN.core.distribution.Uniform
 
SampleClassification - Class in mklab.JGNN.adhoc.train
Extends the ModelTraining class to train Model instances from feature and label matrices.
SampleClassification() - Constructor for class mklab.JGNN.adhoc.train.SampleClassification
 
samples() - Method in class mklab.JGNN.adhoc.Dataset
Retrieves a converter that maps samples to long identifiers that match them to rows of Dataset.features(), Dataset.labels(), and Dataset.graph() matrices.
samplesAsFeatures() - Method in class mklab.JGNN.core.Slice
Constructs a column matrix holding identifiers in the range 0,1,..Slice.size()-1 so that the pattern slice.samplesAsFeatures().accessRows(slice.range(from, end)) retrieves one-element tensors holding slice[from], slice[from+1], ...
save(Path) - Method in class mklab.JGNN.adhoc.ModelBuilder
Serializes the model builder instance into a Path, such as Paths.get("example.jgnn").
saveCommands() - Method in class mklab.JGNN.adhoc.ModelBuilder
 
saveCommands() - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
 
scope() - Static method in class mklab.JGNN.core.Memory
 
Scripting - Class in nodeClassification
Demonstrates classification with an architecture defined through the scripting engine.
Scripting() - Constructor for class nodeClassification.Scripting
 
selfAbs() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfAbs() - Method in class mklab.JGNN.core.Tensor
Performs in-memory set of each element to its absolute value.
selfAdd(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfAdd(double) - Method in class mklab.JGNN.core.Tensor
Performs in-memory addition to the Tensor, storing the result in itself.
selfAdd(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfAdd(Tensor) - Method in class mklab.JGNN.core.Tensor
Performs in-memory addition to the Tensor, storing the result in itself.
selfAdd(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
selfAdd(Tensor, double) - Method in class mklab.JGNN.core.Tensor
Performs in-memory weighted addition to the Tensor, storing the result in itself.
selfExpMinusOne() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfExpMinusOne() - Method in class mklab.JGNN.core.Tensor
Sets the exponential minus 1 of tensor elements.
selfInverse() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfInverse() - Method in class mklab.JGNN.core.Tensor
Performs in-memory the inverse of each non-zero element.
selfLog() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfLog() - Method in class mklab.JGNN.core.Tensor
Performs in-memory set of each element to the logarithm of its absolute value.
selfMultiply(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfMultiply(double) - Method in class mklab.JGNN.core.Tensor
Performs in-memory multiplication on the Tensor, storing the result to itself.
selfMultiply(double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
selfMultiply(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfMultiply(Tensor) - Method in class mklab.JGNN.core.Tensor
Performs in-memory multiplication on the Tensor, storing the result in itself .
selfMultiply(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
selfNegative() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfNegative() - Method in class mklab.JGNN.core.Tensor
Performs in-memory set of each element to the negative of itself.
selfSqrt() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfSqrt() - Method in class mklab.JGNN.core.Tensor
Performs in-memory set of each element to the square root of its absolute value.
selfSubtract(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
selfSubtract(Tensor) - Method in class mklab.JGNN.core.Tensor
Performs in-memory subtraction from the Tensor, storing the result in itself.
selfSubtract(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
set(Tensor) - Method in class mklab.JGNN.nn.inputs.Parameter
Forcefully sets the parameter's value tensor to the desired value.
setColName(String) - Method in class mklab.JGNN.core.Matrix
Sets a name for the matrix's column dimension.
setDescription(String) - Method in class mklab.JGNN.nn.NNOperation
 
setDeviation(double) - Method in class mklab.JGNN.core.distribution.Normal
 
setDeviation(double) - Method in interface mklab.JGNN.core.Distribution
Sets the standard deviation of the distribution.
setDeviation(double) - Method in class mklab.JGNN.core.distribution.Uniform
 
setDiagonal(long, double) - Method in class mklab.JGNN.core.Matrix
Sets the matrix's specified diagonal elements to a given value.
setDimensionName(String) - Method in class mklab.JGNN.core.Tensor
Sets a name for the tensor's one dimension.
setDimensionName(String) - Method in class mklab.JGNN.nn.pooling.Sort
 
setDimensionName(String, String) - Method in class mklab.JGNN.adhoc.IdConverter
Sets dimension names for one-hot encodings.
setDimensionName(String, String) - Method in class mklab.JGNN.core.Matrix
Sets a name for the matrix's row and column dimensions.
setDimensionName(String, String) - Method in class mklab.JGNN.nn.operations.Reshape
 
setDimensionName(Tensor) - Method in class mklab.JGNN.core.Matrix
 
setDimensionName(Tensor) - Method in class mklab.JGNN.core.Tensor
Fills in dimension names per an example Tensor.isMatching(mklab.JGNN.core.Tensor) tensor.
setEnabled(boolean) - Method in class mklab.JGNN.nn.operations.Dropout
 
setEpochs(int) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets the maximum number of epochs for which training runs.
setFeatures(Matrix) - Method in class mklab.JGNN.adhoc.train.SampleClassification
Sets the feature matrix of data samples, where each row corresponds to a different sample.
setGraphLabels(List<Tensor>) - Method in class mklab.JGNN.adhoc.train.AGFTraining
 
setGraphs(List<Matrix>) - Method in class mklab.JGNN.adhoc.train.AGFTraining
 
setInterval(int) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
Changes on which epochs the loss should be reported.
setKey(K) - Method in class mklab.JGNN.core.util.FastEntry
 
setLoss(Loss) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets which Loss should be applied on training batches (the loss is averaged across batches, but is aggregated as a sum within each batch by BatchOptimizer).
setMainDiagonal(double) - Method in class mklab.JGNN.core.Matrix
Sets the matrix's specified main diagonal elements to a given value value.
setMean(double) - Method in class mklab.JGNN.core.distribution.Normal
 
setMean(double) - Method in interface mklab.JGNN.core.Distribution
Sets the mean of the distribution.
setMean(double) - Method in class mklab.JGNN.core.distribution.Uniform
 
setMeanReduction(boolean) - Method in class mklab.JGNN.nn.loss.CategoricalCrossEntropy
Sets the reduction mechanism of categorical cross entropy.
setNodeFeatures(List<Matrix>) - Method in class mklab.JGNN.adhoc.train.AGFTraining
 
setNumBatches(int) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets the number of batches training data slices should be split into.
setOptimizer(Optimizer) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets an Optimizer instance to controls parameter updates during training.
setOutputs(Matrix) - Method in class mklab.JGNN.adhoc.train.SampleClassification
Sets the label matrix of data samples, where each row corresponds to a different sample.
setParallelizedStochasticGradientDescent(boolean) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets whether the training strategy should reflect stochastic gradient descent by randomly sampling from the training data samples.
setPatience(int) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets the patience of the training strategy that performs early stopping.
setPrintOnImprovement(boolean) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
Changes by which criteria losses should be printed, that is, on every fixed count of epochs set by VerboseLoss.setInterval(int) or whenever the primary loss (the first one enclosed in the constructor) decreases.
setRange(double, double) - Method in class mklab.JGNN.core.distribution.Uniform
Sets the random of the uniform distribution.
setRowName(String) - Method in class mklab.JGNN.core.Matrix
Sets a name for the matrix's row dimension.
setSeed(long) - Method in class mklab.JGNN.core.distribution.Normal
 
setSeed(long) - Method in interface mklab.JGNN.core.Distribution
Sets the distribution's seed.
setSeed(long) - Method in class mklab.JGNN.core.distribution.Uniform
 
setStream(PrintStream) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
Changes where the output is printed.
setTo(Tensor) - Method in class mklab.JGNN.nn.inputs.Variable
 
setToASymmetricNormalization() - Method in class mklab.JGNN.core.Matrix
Sets the Matrix to its asymmetrically normalized transformation by appropriately adjusting its element values.
setToNormalized() - Method in class mklab.JGNN.core.Tensor
L2-normalizes the tensor's elements.
setToOnes() - Method in class mklab.JGNN.core.Tensor
Set all tensor element values to 1.
setToProbability() - Method in class mklab.JGNN.core.Tensor
Divides the tensor's elements with their sum.
setToRandom() - Method in class mklab.JGNN.core.Tensor
Set tensor elements to random values from the uniform range [0,1]
setToRandom(Distribution) - Method in class mklab.JGNN.core.Tensor
Set tensor elements to random values by sampling them from a given Distribution instance.
setToSymmetricNormalization() - Method in class mklab.JGNN.core.Matrix
Sets the Matrix to its symmetrically normalized transformation by appropriately adjusting its element values.
setToUniform() - Method in class mklab.JGNN.core.Tensor
Set all tensor element values to 1/Tensor.size()
setToZero() - Method in class mklab.JGNN.core.Tensor
Set all tensor element values to 0.
setTraining(boolean) - Method in class mklab.JGNN.nn.Model
Toggles the training mode of the model.
setTrainingSamples(Slice) - Method in class mklab.JGNN.adhoc.train.SampleClassification
Sets a slice of training samples.
setValidationLoss(Loss) - Method in class mklab.JGNN.adhoc.ModelTraining
Sets which Loss should be applied on validation data on each epoch.
setValidationSamples(Slice) - Method in class mklab.JGNN.adhoc.train.SampleClassification
Sets a slice of validation samples.
setValidationSplit(double) - Method in class mklab.JGNN.adhoc.train.AGFTraining
 
setValue(V) - Method in class mklab.JGNN.core.util.FastEntry
 
setVerbose(boolean) - Method in class mklab.JGNN.adhoc.ModelTraining
Deprecated.
This method was available in earlier JGNN versions but will be gradually phased out. Instead, wrap the validation loss within VerboseLoss to replicate the same behavior.
setZeroCopyType(Matrix) - Method in class mklab.JGNN.core.matrix.WrapCols
Sets a prototype matrix from which to borrow copying operations.
setZeroCopyType(Matrix) - Method in class mklab.JGNN.core.matrix.WrapRows
Sets a prototype matrix from which to borrow copying operations.
shuffle() - Method in class mklab.JGNN.core.Slice
Shuffles the slice.
shuffle(int) - Method in class mklab.JGNN.core.Slice
Shuffles the slice with a provided randomization seed.
sigmoid(double) - Static method in interface mklab.JGNN.core.util.Loss
The sigmoid function 1/(1+exp(-x)).
sigmoid(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
Applies Loss.sigmoid(double) element-by-element.
Sigmoid - Class in mklab.JGNN.nn.activations
Implements a NNOperation that performs a sigmoid transformation of its single input.
Sigmoid() - Constructor for class mklab.JGNN.nn.activations.Sigmoid
 
sigmoidDerivative(double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of the Loss.sigmoid(double) function.
sigmoidDerivative(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
SimpleNetwork - Class in primitives
Demonstrates custom initialization of parameters.
SimpleNetwork() - Constructor for class primitives.SimpleNetwork
 
size() - Method in class mklab.JGNN.adhoc.IdConverter
The number of registered identifiers.
size() - Method in class mklab.JGNN.core.Slice
Retrieves the size of the slice.
size() - Method in class mklab.JGNN.core.Tensor
 
Slice - Class in mklab.JGNN.core
This class provices an interface with which to define data slices, for instance to sample labels.
Slice(Iterable<Long>) - Constructor for class mklab.JGNN.core.Slice
Instantiates a data slice from a collection of element identifiers.
SoftMax - Class in mklab.JGNN.nn.pooling
Implements a NNOperation that performs row-wise or column-wise softmax on vector tensors or matrices.
SoftMax() - Constructor for class mklab.JGNN.nn.pooling.SoftMax
 
SoftMax(boolean) - Constructor for class mklab.JGNN.nn.pooling.SoftMax
 
sort(Tensor, Matrix, long, long) - Method in class mklab.JGNN.nn.pooling.Sort
 
Sort - Class in mklab.JGNN.core.util
 
Sort - Class in mklab.JGNN.nn.pooling
 
Sort() - Constructor for class mklab.JGNN.core.util.Sort
 
Sort(int) - Constructor for class mklab.JGNN.nn.pooling.Sort
 
sortedIndexes(double[]) - Static method in class mklab.JGNN.core.util.Sort
 
sortedIndexes(ArrayList<Double>) - Static method in class mklab.JGNN.core.util.Sort
 
SortPooling - Class in graphClassification
 
SortPooling() - Constructor for class graphClassification.SortPooling
 
SortPoolingManual - Class in graphClassification
 
SortPoolingManual() - Constructor for class graphClassification.SortPoolingManual
 
Sparse2DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.SparseMatrix.Sparse2DIterator
 
SparseMatrix - Class in mklab.JGNN.core.matrix
A sparse Matrix that allocates memory only for non-zero elements.
SparseMatrix(long, long) - Constructor for class mklab.JGNN.core.matrix.SparseMatrix
Generates a sparse matrix with the designated number of rows and columns.
SparseMatrix.Sparse2DIterator - Class in mklab.JGNN.core.matrix
 
SparseSymmetric - Class in mklab.JGNN.core.matrix
Deprecated.
Under development.
SparseSymmetric(long, long) - Constructor for class mklab.JGNN.core.matrix.SparseSymmetric
Deprecated.
Generates a symmetric matrix with the designated number of rows and columns.
SparseTensor - Class in mklab.JGNN.core.tensor
This class provides a sparse Tensor with many zero elements.
SparseTensor() - Constructor for class mklab.JGNN.core.tensor.SparseTensor
 
SparseTensor(long) - Constructor for class mklab.JGNN.core.tensor.SparseTensor
 
SPECIES - Static variable in class mklab.JGNN.core.tensor.VectorizedTensor
 
sqrt() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
sqrt() - Method in class mklab.JGNN.core.Tensor
Computes the square root of tensor elements.
startTape() - Method in class mklab.JGNN.nn.operations.LSTM
 
stochasticGradientDescent - Variable in class mklab.JGNN.adhoc.ModelTraining
 
submit(Runnable) - Method in class mklab.JGNN.core.ThreadPool
Submits a runnable to be executed at some future point by a thread, for example via ThreadPool.getInstance().submit(new Runnable(){public void run(){...}});.
subtensorShouldAccessCorrectElements() - Method in class mklab.JGNN.core.TensorTest
 
subtract(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
subtract(Tensor) - Method in class mklab.JGNN.core.Tensor
 
subtract(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
sum() - Method in class mklab.JGNN.core.Tensor
 
Sum - Class in mklab.JGNN.nn.pooling
Implements a NNOperation that performs row-wise or column-wise sum reduction on vector tensors or matrices.
Sum() - Constructor for class mklab.JGNN.nn.pooling.Sum
 
Sum(boolean) - Constructor for class mklab.JGNN.nn.pooling.Sum
 
symmetricMatrixShouldWork() - Method in class mklab.JGNN.core.MatrixTest
 
symmetricNormalization() - Method in class mklab.JGNN.core.Matrix
Creates a copy of the Matrix that holds its symmetrically normalized version.
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages