Index
All Classes and Interfaces|All Packages
S
- sample() - Method in class mklab.JGNN.core.distribution.Normal
- sample() - Method in interface mklab.JGNN.core.Distribution
-
Retrieves a new sample from the distribution.
- sample() - Method in class mklab.JGNN.core.distribution.Uniform
- SampleClassification - Class in mklab.JGNN.adhoc.train
-
Extends the
ModelTraining
class to trainModel
instances from feature and label matrices. - SampleClassification() - Constructor for class mklab.JGNN.adhoc.train.SampleClassification
- samples() - Method in class mklab.JGNN.adhoc.Dataset
-
Retrieves a converter that maps samples to long identifiers that match them to rows of
Dataset.features()
,Dataset.labels()
, andDataset.graph()
matrices. - samplesAsFeatures() - Method in class mklab.JGNN.core.Slice
-
Constructs a column matrix holding identifiers in the range 0,1,..
Slice.size()
-1 so that the patternslice.samplesAsFeatures().accessRows(slice.range(from, end))
retrieves one-element tensors holdingslice[from], slice[from+1], ...
- save(Path) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Serializes the model builder instance into a Path, such as
Paths.get("example.jgnn")
. - saveCommands() - Method in class mklab.JGNN.adhoc.ModelBuilder
- saveCommands() - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- scope() - Static method in class mklab.JGNN.core.Memory
- Scripting - Class in nodeClassification
-
Demonstrates classification with an architecture defined through the scripting engine.
- Scripting() - Constructor for class nodeClassification.Scripting
- selfAbs() - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfAbs() - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory set of each element to its absolute value.
- selfAdd(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfAdd(double) - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory addition to the Tensor, storing the result in itself.
- selfAdd(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfAdd(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory addition to the Tensor, storing the result in itself.
- selfAdd(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- selfAdd(Tensor, double) - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory weighted addition to the Tensor, storing the result in itself.
- selfExpMinusOne() - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfExpMinusOne() - Method in class mklab.JGNN.core.Tensor
-
Sets the exponential minus 1 of tensor elements.
- selfInverse() - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfInverse() - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory the inverse of each non-zero element.
- selfLog() - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfLog() - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory set of each element to the logarithm of its absolute value.
- selfMultiply(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfMultiply(double) - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory multiplication on the Tensor, storing the result to itself.
- selfMultiply(double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- selfMultiply(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfMultiply(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory multiplication on the Tensor, storing the result in itself .
- selfMultiply(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- selfNegative() - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfNegative() - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory set of each element to the negative of itself.
- selfSqrt() - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfSqrt() - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory set of each element to the square root of its absolute value.
- selfSubtract(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- selfSubtract(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Performs in-memory subtraction from the Tensor, storing the result in itself.
- selfSubtract(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- set(Tensor) - Method in class mklab.JGNN.nn.inputs.Parameter
-
Forcefully sets the parameter's value tensor to the desired value.
- setColName(String) - Method in class mklab.JGNN.core.Matrix
-
Sets a name for the matrix's column dimension.
- setDescription(String) - Method in class mklab.JGNN.nn.NNOperation
- setDeviation(double) - Method in class mklab.JGNN.core.distribution.Normal
- setDeviation(double) - Method in interface mklab.JGNN.core.Distribution
-
Sets the standard deviation of the distribution.
- setDeviation(double) - Method in class mklab.JGNN.core.distribution.Uniform
- setDiagonal(long, double) - Method in class mklab.JGNN.core.Matrix
-
Sets the matrix's specified diagonal elements to a given value.
- setDimensionName(String) - Method in class mklab.JGNN.core.Tensor
-
Sets a name for the tensor's one dimension.
- setDimensionName(String) - Method in class mklab.JGNN.nn.pooling.Sort
- setDimensionName(String, String) - Method in class mklab.JGNN.adhoc.IdConverter
-
Sets dimension names for one-hot encodings.
- setDimensionName(String, String) - Method in class mklab.JGNN.core.Matrix
-
Sets a name for the matrix's row and column dimensions.
- setDimensionName(String, String) - Method in class mklab.JGNN.nn.operations.Reshape
- setDimensionName(Tensor) - Method in class mklab.JGNN.core.Matrix
- setDimensionName(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Fills in dimension names per an example
Tensor.isMatching(mklab.JGNN.core.Tensor)
tensor. - setEnabled(boolean) - Method in class mklab.JGNN.nn.operations.Dropout
- setEpochs(int) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets the maximum number of epochs for which training runs.
- setFeatures(Matrix) - Method in class mklab.JGNN.adhoc.train.SampleClassification
-
Sets the feature matrix of data samples, where each row corresponds to a different sample.
- setGraphLabels(List<Tensor>) - Method in class mklab.JGNN.adhoc.train.AGFTraining
- setGraphs(List<Matrix>) - Method in class mklab.JGNN.adhoc.train.AGFTraining
- setInterval(int) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
-
Changes on which epochs the loss should be reported.
- setKey(K) - Method in class mklab.JGNN.core.util.FastEntry
- setLoss(Loss) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets which
Loss
should be applied on training batches (the loss is averaged across batches, but is aggregated as a sum within each batch byBatchOptimizer
). - setMainDiagonal(double) - Method in class mklab.JGNN.core.Matrix
-
Sets the matrix's specified main diagonal elements to a given value value.
- setMean(double) - Method in class mklab.JGNN.core.distribution.Normal
- setMean(double) - Method in interface mklab.JGNN.core.Distribution
-
Sets the mean of the distribution.
- setMean(double) - Method in class mklab.JGNN.core.distribution.Uniform
- setMeanReduction(boolean) - Method in class mklab.JGNN.nn.loss.CategoricalCrossEntropy
-
Sets the reduction mechanism of categorical cross entropy.
- setNodeFeatures(List<Matrix>) - Method in class mklab.JGNN.adhoc.train.AGFTraining
- setNumBatches(int) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets the number of batches training data slices should be split into.
- setOptimizer(Optimizer) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets an
Optimizer
instance to controls parameter updates during training. - setOutputs(Matrix) - Method in class mklab.JGNN.adhoc.train.SampleClassification
-
Sets the label matrix of data samples, where each row corresponds to a different sample.
- setParallelizedStochasticGradientDescent(boolean) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets whether the training strategy should reflect stochastic gradient descent by randomly sampling from the training data samples.
- setPatience(int) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets the patience of the training strategy that performs early stopping.
- setPrintOnImprovement(boolean) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
-
Changes by which criteria losses should be printed, that is, on every fixed count of epochs set by
VerboseLoss.setInterval(int)
or whenever the primary loss (the first one enclosed in the constructor) decreases. - setRange(double, double) - Method in class mklab.JGNN.core.distribution.Uniform
-
Sets the random of the uniform distribution.
- setRowName(String) - Method in class mklab.JGNN.core.Matrix
-
Sets a name for the matrix's row dimension.
- setSeed(long) - Method in class mklab.JGNN.core.distribution.Normal
- setSeed(long) - Method in interface mklab.JGNN.core.Distribution
-
Sets the distribution's seed.
- setSeed(long) - Method in class mklab.JGNN.core.distribution.Uniform
- setStream(PrintStream) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
-
Changes where the output is printed.
- setTo(Tensor) - Method in class mklab.JGNN.nn.inputs.Variable
- setToASymmetricNormalization() - Method in class mklab.JGNN.core.Matrix
-
Sets the Matrix to its asymmetrically normalized transformation by appropriately adjusting its element values.
- setToNormalized() - Method in class mklab.JGNN.core.Tensor
-
L2-normalizes the tensor's elements.
- setToOnes() - Method in class mklab.JGNN.core.Tensor
-
Set all tensor element values to 1.
- setToProbability() - Method in class mklab.JGNN.core.Tensor
-
Divides the tensor's elements with their sum.
- setToRandom() - Method in class mklab.JGNN.core.Tensor
-
Set tensor elements to random values from the uniform range [0,1]
- setToRandom(Distribution) - Method in class mklab.JGNN.core.Tensor
-
Set tensor elements to random values by sampling them from a given
Distribution
instance. - setToSymmetricNormalization() - Method in class mklab.JGNN.core.Matrix
-
Sets the Matrix to its symmetrically normalized transformation by appropriately adjusting its element values.
- setToUniform() - Method in class mklab.JGNN.core.Tensor
-
Set all tensor element values to 1/
Tensor.size()
- setToZero() - Method in class mklab.JGNN.core.Tensor
-
Set all tensor element values to 0.
- setTraining(boolean) - Method in class mklab.JGNN.nn.Model
-
Toggles the training mode of the model.
- setTrainingSamples(Slice) - Method in class mklab.JGNN.adhoc.train.SampleClassification
-
Sets a slice of training samples.
- setValidationLoss(Loss) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Sets which
Loss
should be applied on validation data on each epoch. - setValidationSamples(Slice) - Method in class mklab.JGNN.adhoc.train.SampleClassification
-
Sets a slice of validation samples.
- setValidationSplit(double) - Method in class mklab.JGNN.adhoc.train.AGFTraining
- setValue(V) - Method in class mklab.JGNN.core.util.FastEntry
- setVerbose(boolean) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Deprecated.
- setZeroCopyType(Matrix) - Method in class mklab.JGNN.core.matrix.WrapCols
-
Sets a prototype matrix from which to borrow copying operations.
- setZeroCopyType(Matrix) - Method in class mklab.JGNN.core.matrix.WrapRows
-
Sets a prototype matrix from which to borrow copying operations.
- shuffle() - Method in class mklab.JGNN.core.Slice
-
Shuffles the slice.
- shuffle(int) - Method in class mklab.JGNN.core.Slice
-
Shuffles the slice with a provided randomization seed.
- sigmoid(double) - Static method in interface mklab.JGNN.core.util.Loss
-
The sigmoid function 1/(1+exp(-x)).
- sigmoid(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
-
Applies
Loss.sigmoid(double)
element-by-element. - Sigmoid - Class in mklab.JGNN.nn.activations
-
Implements a
NNOperation
that performs a sigmoid transformation of its single input. - Sigmoid() - Constructor for class mklab.JGNN.nn.activations.Sigmoid
- sigmoidDerivative(double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of the
Loss.sigmoid(double)
function. - sigmoidDerivative(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
-
Applies
Loss.sigmoidDerivative(double)
function. - SimpleNetwork - Class in primitives
-
Demonstrates custom initialization of parameters.
- SimpleNetwork() - Constructor for class primitives.SimpleNetwork
- size() - Method in class mklab.JGNN.adhoc.IdConverter
-
The number of registered identifiers.
- size() - Method in class mklab.JGNN.core.Slice
-
Retrieves the size of the slice.
- size() - Method in class mklab.JGNN.core.Tensor
- Slice - Class in mklab.JGNN.core
-
This class provices an interface with which to define data slices, for instance to sample labels.
- Slice(Iterable<Long>) - Constructor for class mklab.JGNN.core.Slice
-
Instantiates a data slice from a collection of element identifiers.
- SoftMax - Class in mklab.JGNN.nn.pooling
-
Implements a
NNOperation
that performs row-wise or column-wise softmax on vector tensors or matrices. - SoftMax() - Constructor for class mklab.JGNN.nn.pooling.SoftMax
- SoftMax(boolean) - Constructor for class mklab.JGNN.nn.pooling.SoftMax
- sort(Tensor, Matrix, long, long) - Method in class mklab.JGNN.nn.pooling.Sort
- Sort - Class in mklab.JGNN.core.util
- Sort - Class in mklab.JGNN.nn.pooling
- Sort() - Constructor for class mklab.JGNN.core.util.Sort
- Sort(int) - Constructor for class mklab.JGNN.nn.pooling.Sort
- sortedIndexes(double[]) - Static method in class mklab.JGNN.core.util.Sort
- sortedIndexes(ArrayList<Double>) - Static method in class mklab.JGNN.core.util.Sort
- SortPooling - Class in graphClassification
- SortPooling() - Constructor for class graphClassification.SortPooling
- SortPoolingManual - Class in graphClassification
- SortPoolingManual() - Constructor for class graphClassification.SortPoolingManual
- Sparse2DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.SparseMatrix.Sparse2DIterator
- SparseMatrix - Class in mklab.JGNN.core.matrix
-
A sparse
Matrix
that allocates memory only for non-zero elements. - SparseMatrix(long, long) - Constructor for class mklab.JGNN.core.matrix.SparseMatrix
-
Generates a sparse matrix with the designated number of rows and columns.
- SparseMatrix.Sparse2DIterator - Class in mklab.JGNN.core.matrix
- SparseSymmetric - Class in mklab.JGNN.core.matrix
-
Deprecated.Under development.
- SparseSymmetric(long, long) - Constructor for class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.Generates a symmetric matrix with the designated number of rows and columns.
- SparseTensor - Class in mklab.JGNN.core.tensor
-
This class provides a sparse
Tensor
with many zero elements. - SparseTensor() - Constructor for class mklab.JGNN.core.tensor.SparseTensor
- SparseTensor(long) - Constructor for class mklab.JGNN.core.tensor.SparseTensor
- SPECIES - Static variable in class mklab.JGNN.core.tensor.VectorizedTensor
- sqrt() - Method in class mklab.JGNN.core.tensor.DenseTensor
- sqrt() - Method in class mklab.JGNN.core.Tensor
-
Computes the square root of tensor elements.
- startTape() - Method in class mklab.JGNN.nn.operations.LSTM
- stochasticGradientDescent - Variable in class mklab.JGNN.adhoc.ModelTraining
- submit(Runnable) - Method in class mklab.JGNN.core.ThreadPool
-
Submits a runnable to be executed at some future point by a thread, for example via
ThreadPool.getInstance().submit(new Runnable(){public void run(){...}});
. - subtensorShouldAccessCorrectElements() - Method in class mklab.JGNN.core.TensorTest
- subtract(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- subtract(Tensor) - Method in class mklab.JGNN.core.Tensor
- subtract(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- sum() - Method in class mklab.JGNN.core.Tensor
- Sum - Class in mklab.JGNN.nn.pooling
-
Implements a
NNOperation
that performs row-wise or column-wise sum reduction on vector tensors or matrices. - Sum() - Constructor for class mklab.JGNN.nn.pooling.Sum
- Sum(boolean) - Constructor for class mklab.JGNN.nn.pooling.Sum
- symmetricMatrixShouldWork() - Method in class mklab.JGNN.core.MatrixTest
- symmetricNormalization() - Method in class mklab.JGNN.core.Matrix
-
Creates a copy of the Matrix that holds its symmetrically normalized version.
All Classes and Interfaces|All Packages
VerboseLoss
to replicate the same behavior.