Index
All Classes and Interfaces|All Packages
P
- paralellization - Variable in class mklab.JGNN.adhoc.ModelTraining
- param(String, double, Tensor) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a learnable
Paramater
component with the given name, learning L2 regularization, and initial value. - param(String, double, Tensor) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- param(String, double, Tensor) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- param(String, Tensor) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a learnable
mklab.JGNN.nn.inputs.Paramater
component with the given name, zero regularization, and initial value. - param(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
- param(String, Tensor) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- Parameter - Class in mklab.JGNN.nn.inputs
-
Implements a
NNOperation
that holds and returns a parameter tensor. - Parameter(Tensor) - Constructor for class mklab.JGNN.nn.inputs.Parameter
- Parameter(Tensor, double) - Constructor for class mklab.JGNN.nn.inputs.Parameter
- parse(String) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
-
Parses Neuralang source code by handling function declarations in addition to other expressions.
- parse(Path) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
-
Parses a Neuralang source code file.
- parseConfigValue(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.Exp
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.L1
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.LRelu
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.NExp
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.PRelu
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.Relu
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.Sigmoid
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.activations.Tanh
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.inputs.Parameter
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.inputs.Variable
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.NNOperation
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Add
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Attention
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Complement
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Concat
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Dropout
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.From
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Gather
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Identity
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Log
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.MatMul
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Multiply
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Reduce
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Repeat
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Reshape
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.To
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.operations.Transpose
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.pooling.Max
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.pooling.Mean
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.pooling.SoftMax
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.pooling.Sort
- partial(int, List<Tensor>, Tensor, Tensor) - Method in class mklab.JGNN.nn.pooling.Sum
- patience - Variable in class mklab.JGNN.adhoc.ModelTraining
- persist() - Method in class mklab.JGNN.core.empty.EmptyMatrix
- persist() - Method in class mklab.JGNN.core.empty.EmptyTensor
- persist() - Method in class mklab.JGNN.core.matrix.AccessCol
- persist() - Method in class mklab.JGNN.core.matrix.AccessRow
- persist() - Method in class mklab.JGNN.core.matrix.ColumnRepetition
- persist() - Method in class mklab.JGNN.core.matrix.DenseMatrix
- persist() - Method in class mklab.JGNN.core.matrix.Diagonal
- persist() - Method in class mklab.JGNN.core.matrix.RepeatMatrix
- persist() - Method in class mklab.JGNN.core.matrix.RowRepetition
- persist() - Method in class mklab.JGNN.core.matrix.SparseMatrix
- persist() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.
- persist() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- persist() - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- persist() - Method in class mklab.JGNN.core.matrix.WrapCols
- persist() - Method in class mklab.JGNN.core.matrix.WrapRows
- persist() - Method in class mklab.JGNN.core.tensor.AccessSubtensor
- persist() - Method in class mklab.JGNN.core.tensor.DenseTensor
- persist() - Method in class mklab.JGNN.core.Tensor
-
Deprecated.This method may not be present in future versions of the library, depending on whether memory reuse proves useful or nor.
- persist() - Method in class mklab.JGNN.core.tensor.RepeatTensor
- persist() - Method in class mklab.JGNN.core.tensor.SparseTensor
- persist() - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- predict(List<Tensor>) - Method in class mklab.JGNN.nn.Model
-
Forward run of the model given a list of input tensors.
- predict(Tensor...) - Method in class mklab.JGNN.nn.Model
-
Forward run of the model given an array of input tensors.
- predict(Tensor[]) - Method in class mklab.JGNN.nn.operations.LSTM
- PRelu - Class in mklab.JGNN.nn.activations
- PRelu() - Constructor for class mklab.JGNN.nn.activations.PRelu
- primitives - package primitives
- print() - Method in class mklab.JGNN.adhoc.ModelBuilder
- print() - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
-
Prints the current state of accumulated losses.
- printState() - Method in class mklab.JGNN.adhoc.ModelBuilder
- Pubmed - Class in mklab.JGNN.adhoc.datasets
-
Downloads and constructs the Pubmed node classification
Dataset
. - Pubmed() - Constructor for class mklab.JGNN.adhoc.datasets.Pubmed
- put(int, double) - Method in class mklab.JGNN.core.tensor.DenseTensor
-
Overloads
DenseTensor.put(long, double)
to accept integer positions. - put(int, double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- put(long, double) - Method in class mklab.JGNN.core.empty.EmptyMatrix
- put(long, double) - Method in class mklab.JGNN.core.empty.EmptyTensor
- put(long, double) - Method in class mklab.JGNN.core.matrix.AccessCol
- put(long, double) - Method in class mklab.JGNN.core.matrix.AccessRow
- put(long, double) - Method in class mklab.JGNN.core.matrix.ColumnRepetition
- put(long, double) - Method in class mklab.JGNN.core.matrix.DenseMatrix
- put(long, double) - Method in class mklab.JGNN.core.matrix.Diagonal
- put(long, double) - Method in class mklab.JGNN.core.matrix.RepeatMatrix
- put(long, double) - Method in class mklab.JGNN.core.matrix.RowRepetition
- put(long, double) - Method in class mklab.JGNN.core.matrix.SparseMatrix
- put(long, double) - Method in class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.
- put(long, double) - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- put(long, double) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- put(long, double) - Method in class mklab.JGNN.core.matrix.WrapCols
- put(long, double) - Method in class mklab.JGNN.core.matrix.WrapRows
- put(long, double) - Method in class mklab.JGNN.core.tensor.AccessSubtensor
- put(long, double) - Method in class mklab.JGNN.core.tensor.DenseTensor
- put(long, double) - Method in class mklab.JGNN.core.Tensor
-
Assign a value to a tensor element.
- put(long, double) - Method in class mklab.JGNN.core.tensor.RepeatTensor
- put(long, double) - Method in class mklab.JGNN.core.tensor.SparseTensor
- put(long, double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- put(long, long, double) - Method in class mklab.JGNN.core.Matrix
-
Stores values at matrix elements.
- putAdd(int, double) - Method in class mklab.JGNN.core.tensor.DenseTensor
-
Overloads
Tensor.putAdd(long, double)
to accept integer positions. - putAdd(int, double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- putAdd(long, double) - Method in class mklab.JGNN.core.Tensor
-
Add a value to a tensor element.
All Classes and Interfaces|All Packages