Index
All Classes and Interfaces|All Packages
R
- range(double, double) - Method in class mklab.JGNN.core.Slice
-
Performs the
Slice.range(int, int)
operation while replacing values offrom
andend
with(int)(from*size())
and(int)(end*size())
so that fractional ranges can be obtained. - range(int, int) - Method in class mklab.JGNN.core.Slice
-
Obtains the identifiers in a given range of the (shuffled) slice.
- Range - Class in mklab.JGNN.core.util
-
Implements an iterator that traverses a range [min, max) where the right side is non-inclusive.
- Range(long, long) - Constructor for class mklab.JGNN.core.util.Range
-
Initializes a range [min, max) of subsequent integers where the right side is non-inclusive.
- Range2D - Class in mklab.JGNN.core.util
-
Implements an iterator that traverses a two-dimensional range (min, max) x (min2, max2).
- Range2D(long, long, long, long) - Constructor for class mklab.JGNN.core.util.Range2D
- Reduce - Class in mklab.JGNN.nn.operations
- Reduce() - Constructor for class mklab.JGNN.nn.operations.Reduce
- register(double[]) - Method in class mklab.JGNN.core.Memory.Scope
- regularization - Variable in class mklab.JGNN.nn.inputs.Parameter
- regularization - Variable in class mklab.JGNN.nn.optimizers.Regularization
- Regularization - Class in mklab.JGNN.nn.optimizers
-
Wraps an
Optimizer
by applying the derivative of L2 loss on every tensor duringOptimizer.update(Tensor, Tensor)
. - Regularization() - Constructor for class mklab.JGNN.nn.optimizers.Regularization
- Regularization(Optimizer, double) - Constructor for class mklab.JGNN.nn.optimizers.Regularization
-
Initializes a
Regularization
. - release() - Method in class mklab.JGNN.core.empty.EmptyMatrix
- release() - Method in class mklab.JGNN.core.empty.EmptyTensor
- release() - Method in class mklab.JGNN.core.matrix.AccessCol
- release() - Method in class mklab.JGNN.core.matrix.AccessRow
- release() - Method in class mklab.JGNN.core.matrix.ColumnRepetition
- release() - Method in class mklab.JGNN.core.matrix.DenseMatrix
- release() - Method in class mklab.JGNN.core.matrix.Diagonal
- release() - Method in class mklab.JGNN.core.matrix.RepeatMatrix
- release() - Method in class mklab.JGNN.core.matrix.RowRepetition
- release() - Method in class mklab.JGNN.core.matrix.SparseMatrix
- release() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.
- release() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- release() - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- release() - Method in class mklab.JGNN.core.matrix.WrapCols
- release() - Method in class mklab.JGNN.core.matrix.WrapRows
- release() - Method in class mklab.JGNN.core.tensor.AccessSubtensor
- release() - Method in class mklab.JGNN.core.tensor.DenseTensor
- release() - Method in class mklab.JGNN.core.Tensor
-
Deprecated.This method may not be present in future versions of the library, depending on whether memory reuse proves useful or nor.
- release() - Method in class mklab.JGNN.core.tensor.RepeatTensor
- release() - Method in class mklab.JGNN.core.tensor.SparseTensor
- release() - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- release(double[]) - Static method in class mklab.JGNN.core.Memory
- relu(double) - Static method in interface mklab.JGNN.core.util.Loss
-
The relu activation x if x > 0, 0 otherwise
- relu(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
-
Applies
Loss.relu(double)
element-by-element. - Relu - Class in mklab.JGNN.nn.activations
-
Implements a
NNOperation
that performs a relu transformation of its one input tensor. - Relu() - Constructor for class mklab.JGNN.nn.activations.Relu
- reluDerivative(double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of the
Loss.relu(double)
function. - reluDerivative(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
-
Applies
Loss.reluDerivative(double)
function. - rememberAs(String) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
-
Remembers the last layer's output per a given identifier so that {layerId} within future
FastBuilder.layer(String)
definitions is made to refer to the current layer. - rememberAs(String) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
-
Sets the current layer identifier to a specific symbol
layerId
so that future usage of{layerId}
is automatically replaced with the identifier. - Repeat - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that converts its first argument to aColumnRepetition
matrix with a number of columns equal to the second argument. - Repeat() - Constructor for class mklab.JGNN.nn.operations.Repeat
- Repeat1DIterator() - Constructor for class mklab.JGNN.core.matrix.ColumnRepetition.Repeat1DIterator
- Repeat1DIterator() - Constructor for class mklab.JGNN.core.matrix.RowRepetition.Repeat1DIterator
- Repeat2DIterator() - Constructor for class mklab.JGNN.core.matrix.ColumnRepetition.Repeat2DIterator
- Repeat2DIterator() - Constructor for class mklab.JGNN.core.matrix.RowRepetition.Repeat2DIterator
- RepeatMatrix - Class in mklab.JGNN.core.matrix
-
Implements a
Matrix
whose elements are all equals. - RepeatMatrix(double, long, long) - Constructor for class mklab.JGNN.core.matrix.RepeatMatrix
-
Generates a dense matrix with the designated number of rows and columns.
- RepeatTensor - Class in mklab.JGNN.core.tensor
-
This class provides
Tensor
whose elements are all equal. - RepeatTensor(double, long) - Constructor for class mklab.JGNN.core.tensor.RepeatTensor
- reset() - Method in interface mklab.JGNN.nn.Optimizer
-
Resets (and lets the garbage collector free) optimizer memory.
- reset() - Method in class mklab.JGNN.nn.optimizers.Adam
- reset() - Method in class mklab.JGNN.nn.optimizers.BatchOptimizer
- reset() - Method in class mklab.JGNN.nn.optimizers.GradientDescent
- reset() - Method in class mklab.JGNN.nn.optimizers.Regularization
- Reshape - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that reshapes a matrix. - Reshape(long, long) - Constructor for class mklab.JGNN.nn.operations.Reshape
- row - Variable in class mklab.JGNN.core.matrix.RowRepetition
- RowRepetition - Class in mklab.JGNN.core.matrix
-
Defines a matrix whose rows are all a copy of a
Tensor
. - RowRepetition(Tensor, long) - Constructor for class mklab.JGNN.core.matrix.RowRepetition
-
Instantiates a matrix repeating a tensor to be treated as a row.
- RowRepetition.Repeat1DIterator - Class in mklab.JGNN.core.matrix
- RowRepetition.Repeat2DIterator - Class in mklab.JGNN.core.matrix
- run(List<Tensor>) - Method in class mklab.JGNN.nn.NNOperation
-
Performs a forward pass in the operation without inducing any kind of learning or storing the outcome.
- run(Tensor...) - Method in class mklab.JGNN.nn.NNOperation
-
Performs a forward pass in the operation without inducing any kind of learning or storing the outcome.
- runModel(ArrayList<Tensor>) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
This is a wrapper for
getModel().predict(inputs)
without returning output values (useModelBuilder.get(String)
afterwards to view outputs. - runModel(Tensor...) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
This is a wrapper for
getModel().predict(inputs)
without returning output values (useModelBuilder.get(String)
afterwards to view outputs. - runPrediction() - Method in class mklab.JGNN.nn.NNOperation
- runPredictionAndAutosize() - Method in class mklab.JGNN.nn.NNOperation
All Classes and Interfaces|All Packages