Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

R

range(double, double) - Method in class mklab.JGNN.core.Slice
Performs the Slice.range(int, int) operation while replacing values of from and end with (int)(from*size()) and (int)(end*size()) so that fractional ranges can be obtained.
range(int, int) - Method in class mklab.JGNN.core.Slice
Obtains the identifiers in a given range of the (shuffled) slice.
Range - Class in mklab.JGNN.core.util
Implements an iterator that traverses a range [min, max) where the right side is non-inclusive.
Range(long, long) - Constructor for class mklab.JGNN.core.util.Range
Initializes a range [min, max) of subsequent integers where the right side is non-inclusive.
Range2D - Class in mklab.JGNN.core.util
Implements an iterator that traverses a two-dimensional range (min, max) x (min2, max2).
Range2D(long, long, long, long) - Constructor for class mklab.JGNN.core.util.Range2D
 
Reduce - Class in mklab.JGNN.nn.operations
 
Reduce() - Constructor for class mklab.JGNN.nn.operations.Reduce
 
register(double[]) - Method in class mklab.JGNN.core.Memory.Scope
 
regularization - Variable in class mklab.JGNN.nn.inputs.Parameter
 
regularization - Variable in class mklab.JGNN.nn.optimizers.Regularization
 
Regularization - Class in mklab.JGNN.nn.optimizers
Wraps an Optimizer by applying the derivative of L2 loss on every tensor during Optimizer.update(Tensor, Tensor).
Regularization() - Constructor for class mklab.JGNN.nn.optimizers.Regularization
 
Regularization(Optimizer, double) - Constructor for class mklab.JGNN.nn.optimizers.Regularization
Initializes a Regularization.
release() - Method in class mklab.JGNN.core.empty.EmptyMatrix
 
release() - Method in class mklab.JGNN.core.empty.EmptyTensor
 
release() - Method in class mklab.JGNN.core.matrix.AccessCol
 
release() - Method in class mklab.JGNN.core.matrix.AccessRow
 
release() - Method in class mklab.JGNN.core.matrix.ColumnRepetition
 
release() - Method in class mklab.JGNN.core.matrix.DenseMatrix
 
release() - Method in class mklab.JGNN.core.matrix.Diagonal
 
release() - Method in class mklab.JGNN.core.matrix.RepeatMatrix
 
release() - Method in class mklab.JGNN.core.matrix.RowRepetition
 
release() - Method in class mklab.JGNN.core.matrix.SparseMatrix
 
release() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
Deprecated.
 
release() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
 
release() - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
 
release() - Method in class mklab.JGNN.core.matrix.WrapCols
 
release() - Method in class mklab.JGNN.core.matrix.WrapRows
 
release() - Method in class mklab.JGNN.core.tensor.AccessSubtensor
 
release() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
release() - Method in class mklab.JGNN.core.Tensor
Deprecated.
This method may not be present in future versions of the library, depending on whether memory reuse proves useful or nor.
release() - Method in class mklab.JGNN.core.tensor.RepeatTensor
 
release() - Method in class mklab.JGNN.core.tensor.SparseTensor
 
release() - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
release(double[]) - Static method in class mklab.JGNN.core.Memory
 
relu(double) - Static method in interface mklab.JGNN.core.util.Loss
The relu activation x if x > 0, 0 otherwise
relu(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
Applies Loss.relu(double) element-by-element.
Relu - Class in mklab.JGNN.nn.activations
Implements a NNOperation that performs a relu transformation of its one input tensor.
Relu() - Constructor for class mklab.JGNN.nn.activations.Relu
 
reluDerivative(double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of the Loss.relu(double) function.
reluDerivative(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
Applies Loss.reluDerivative(double) function.
rememberAs(String) - Method in class mklab.JGNN.adhoc.parsers.FastBuilder
Remembers the last layer's output per a given identifier so that {layerId} within future FastBuilder.layer(String) definitions is made to refer to the current layer.
rememberAs(String) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
Sets the current layer identifier to a specific symbol layerId so that future usage of {layerId} is automatically replaced with the identifier.
Repeat - Class in mklab.JGNN.nn.operations
Implements a NNOperation that converts its first argument to a ColumnRepetition matrix with a number of columns equal to the second argument.
Repeat() - Constructor for class mklab.JGNN.nn.operations.Repeat
 
Repeat1DIterator() - Constructor for class mklab.JGNN.core.matrix.ColumnRepetition.Repeat1DIterator
 
Repeat1DIterator() - Constructor for class mklab.JGNN.core.matrix.RowRepetition.Repeat1DIterator
 
Repeat2DIterator() - Constructor for class mklab.JGNN.core.matrix.ColumnRepetition.Repeat2DIterator
 
Repeat2DIterator() - Constructor for class mklab.JGNN.core.matrix.RowRepetition.Repeat2DIterator
 
RepeatMatrix - Class in mklab.JGNN.core.matrix
Implements a Matrix whose elements are all equals.
RepeatMatrix(double, long, long) - Constructor for class mklab.JGNN.core.matrix.RepeatMatrix
Generates a dense matrix with the designated number of rows and columns.
RepeatTensor - Class in mklab.JGNN.core.tensor
This class provides Tensor whose elements are all equal.
RepeatTensor(double, long) - Constructor for class mklab.JGNN.core.tensor.RepeatTensor
 
reset() - Method in interface mklab.JGNN.nn.Optimizer
Resets (and lets the garbage collector free) optimizer memory.
reset() - Method in class mklab.JGNN.nn.optimizers.Adam
 
reset() - Method in class mklab.JGNN.nn.optimizers.BatchOptimizer
 
reset() - Method in class mklab.JGNN.nn.optimizers.GradientDescent
 
reset() - Method in class mklab.JGNN.nn.optimizers.Regularization
 
Reshape - Class in mklab.JGNN.nn.operations
Implements a NNOperation that reshapes a matrix.
Reshape(long, long) - Constructor for class mklab.JGNN.nn.operations.Reshape
 
row - Variable in class mklab.JGNN.core.matrix.RowRepetition
 
RowRepetition - Class in mklab.JGNN.core.matrix
Defines a matrix whose rows are all a copy of a Tensor.
RowRepetition(Tensor, long) - Constructor for class mklab.JGNN.core.matrix.RowRepetition
Instantiates a matrix repeating a tensor to be treated as a row.
RowRepetition.Repeat1DIterator - Class in mklab.JGNN.core.matrix
 
RowRepetition.Repeat2DIterator - Class in mklab.JGNN.core.matrix
 
run(List<Tensor>) - Method in class mklab.JGNN.nn.NNOperation
Performs a forward pass in the operation without inducing any kind of learning or storing the outcome.
run(Tensor...) - Method in class mklab.JGNN.nn.NNOperation
Performs a forward pass in the operation without inducing any kind of learning or storing the outcome.
runModel(ArrayList<Tensor>) - Method in class mklab.JGNN.adhoc.ModelBuilder
This is a wrapper for getModel().predict(inputs) without returning output values (use ModelBuilder.get(String) afterwards to view outputs.
runModel(Tensor...) - Method in class mklab.JGNN.adhoc.ModelBuilder
This is a wrapper for getModel().predict(inputs) without returning output values (use ModelBuilder.get(String) afterwards to view outputs.
runPrediction() - Method in class mklab.JGNN.nn.NNOperation
 
runPredictionAndAutosize() - Method in class mklab.JGNN.nn.NNOperation
 
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages