Index
All Classes and Interfaces|All Packages
A
- abs() - Method in class mklab.JGNN.core.Tensor
-
Computes the absolute value of tensor elements.
- abs() - Method in class mklab.JGNN.core.tensor.DenseTensor
- accessCol(long) - Method in class mklab.JGNN.core.Matrix
-
Retrieves the given column as a tensor.
- accessCol(long) - Method in class mklab.JGNN.core.matrix.WrapCols
- AccessCol - Class in mklab.JGNN.core.matrix
- AccessCol(Matrix, long) - Constructor for class mklab.JGNN.core.matrix.AccessCol
-
Instantiates a see-through access of a matrix column.
- accessColumns() - Method in class mklab.JGNN.core.Matrix
-
Organizes specific matrix columns to a list of tensors that share entries.
- accessColumns(long...) - Method in class mklab.JGNN.core.Matrix
-
Organizes specific matrix columns to a list of tensors that share entries.
- accessColumns(Iterable<Long>) - Method in class mklab.JGNN.core.Matrix
-
Organizes some matrix columns to a list of tensors that share entries.
- accessColumns(Tensor) - Method in class mklab.JGNN.core.Matrix
-
Organizes matrix columns to a list of tensors that share entries.
- accessDim(long, String) - Method in class mklab.JGNN.core.Matrix
-
Retrieves either the given row or column as a trensor.
- accessRow(long) - Method in class mklab.JGNN.core.Matrix
-
Retrieves the given row as a tensor.
- accessRow(long) - Method in class mklab.JGNN.core.matrix.WrapRows
- AccessRow - Class in mklab.JGNN.core.matrix
- AccessRow(Matrix, long) - Constructor for class mklab.JGNN.core.matrix.AccessRow
-
Instantiates a see-through access of a matrix row.
- accessRows() - Method in class mklab.JGNN.core.Matrix
-
Organizes matrix rows to a list of tensors that share entries.
- accessRows(long...) - Method in class mklab.JGNN.core.Matrix
-
Organizes specific matrix rows to a list of tensors that share entries.
- accessRows(Iterable<Long>) - Method in class mklab.JGNN.core.Matrix
-
Organizes some matrix rows to a list of tensors that share entries.
- accessRows(Tensor) - Method in class mklab.JGNN.core.Matrix
-
Organizes specific matrix rows to a list of tensors that share entries.
- accessSubtensor(long) - Method in class mklab.JGNN.core.Tensor
-
Wraps a range of elements within a tensor without allocating memory anew.
- accessSubtensor(long, long) - Method in class mklab.JGNN.core.Tensor
-
Wraps a range of elements within a tensor without allocating memory anew.
- AccessSubtensor - Class in mklab.JGNN.core.tensor
-
Wraps a base
Tensor
by traversing only its elements in a specified range (from begin, up to end-1). - AccessSubtensor(Tensor, long) - Constructor for class mklab.JGNN.core.tensor.AccessSubtensor
-
Instantiates a see-through access of a tensor elements.
- AccessSubtensor(Tensor, long, long) - Constructor for class mklab.JGNN.core.tensor.AccessSubtensor
-
Instantiates a see-through access of a tensor elements.
- Accuracy - Class in mklab.JGNN.nn.loss
-
Implements an accuracy
Loss
of row-by-row comparisons. - Accuracy() - Constructor for class mklab.JGNN.nn.loss.Accuracy
-
Instantiates a row-by-row
Accuracy
loss. - Adam - Class in mklab.JGNN.nn.optimizers
-
Thic class implements an Adam
Optimizer
as explained in the paper: Kingma, Diederik P., and Jimmy Ba. - Adam() - Constructor for class mklab.JGNN.nn.optimizers.Adam
-
Initializes an NDAdam instance of an
Adam
optimizer with the default parameters recommended by the papers. - Adam(boolean, double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
-
Initializes an
Adam
optimizer with the default parameters recommended in the literature, but allows for the specification of the learning rate and whether NDAdam or simple Adam is used. - Adam(boolean, double, double, double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
-
Initializes an instance of an
Adam
optimizer with the default parameters while customizing the variation and learning rate. - Adam(boolean, double, double, double, double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
-
Initializes an
Adam
optimizer by customizing all arguments. - Adam(double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
-
Initializes an NDAdam instance of an
Adam
optimizer with the default parameters recommended by the papers but allows for the specification of the learning rate. - add(double) - Method in class mklab.JGNN.core.Tensor
- add(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
- add(Tensor) - Method in class mklab.JGNN.core.Tensor
- add(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- add(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- Add - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that adds its two inputs. - Add() - Constructor for class mklab.JGNN.nn.operations.Add
- addGraph(Matrix, Matrix, Tensor) - Method in class mklab.JGNN.adhoc.train.AGFTraining
- addInput(Variable) - Method in class mklab.JGNN.nn.Model
-
Adds to the model's inputs the provided
Variable
. - addInput(NNOperation) - Method in class mklab.JGNN.nn.inputs.Parameter
- addInput(NNOperation) - Method in class mklab.JGNN.nn.NNOperation
- addOutput(NNOperation) - Method in class mklab.JGNN.nn.Model
-
Adds to the model's output the output of the provided operation.
- AGFTraining - Class in mklab.JGNN.adhoc.train
-
Extends the
ModelTraining
class to be able to trainModel
instances for attributed graph functions (AGFs). - AGFTraining() - Constructor for class mklab.JGNN.adhoc.train.AGFTraining
- aggregate(LSTM) - Method in class mklab.JGNN.nn.operations.LSTM
- allBaseMatrixTypes(long, long) - Method in class mklab.JGNN.core.MatrixTest
- allMatrixTypes(long) - Method in class mklab.JGNN.core.MatrixTest
- allocate(int, Object) - Static method in class mklab.JGNN.core.Memory
- allocate(long) - Method in class mklab.JGNN.core.empty.EmptyMatrix
- allocate(long) - Method in class mklab.JGNN.core.empty.EmptyTensor
- allocate(long) - Method in class mklab.JGNN.core.matrix.AccessCol
- allocate(long) - Method in class mklab.JGNN.core.matrix.AccessRow
- allocate(long) - Method in class mklab.JGNN.core.matrix.ColumnRepetition
- allocate(long) - Method in class mklab.JGNN.core.matrix.DenseMatrix
- allocate(long) - Method in class mklab.JGNN.core.matrix.Diagonal
- allocate(long) - Method in class mklab.JGNN.core.matrix.RepeatMatrix
- allocate(long) - Method in class mklab.JGNN.core.matrix.RowRepetition
- allocate(long) - Method in class mklab.JGNN.core.matrix.SparseMatrix
- allocate(long) - Method in class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.
- allocate(long) - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- allocate(long) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- allocate(long) - Method in class mklab.JGNN.core.matrix.WrapCols
- allocate(long) - Method in class mklab.JGNN.core.matrix.WrapRows
- allocate(long) - Method in class mklab.JGNN.core.tensor.AccessSubtensor
- allocate(long) - Method in class mklab.JGNN.core.Tensor
- allocate(long) - Method in class mklab.JGNN.core.tensor.DenseTensor
- allocate(long) - Method in class mklab.JGNN.core.tensor.RepeatTensor
- allocate(long) - Method in class mklab.JGNN.core.tensor.SparseTensor
- allocate(long) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- allSquareMatrixTypes(long) - Method in class mklab.JGNN.core.MatrixTest
- allTensorTypes() - Method in class mklab.JGNN.core.TensorTest
- allTensorTypes(long) - Method in class mklab.JGNN.core.TensorTest
- allTensorTypesRandom(long) - Method in class mklab.JGNN.core.TensorTest
- apply(Model) - Method in class mklab.JGNN.nn.Initializer
-
Applies the initializer to a given model's parameters.
- apply(Model) - Method in class mklab.JGNN.nn.initializers.VariancePreservingInitializer
- APPNP - Class in nodeClassification
-
Demonstrates classification with an APPNP GNN.
- APPNP() - Constructor for class nodeClassification.APPNP
- argmax() - Method in class mklab.JGNN.core.Tensor
-
Computes the position of the maximum tensor element.
- argmin() - Method in class mklab.JGNN.core.Tensor
-
Computes the position of the minimum tensor element.
- asColumn() - Method in class mklab.JGNN.core.Tensor
-
Accesses the tensor through a single-column matrix with the tensor as the only row.
- asRow() - Method in class mklab.JGNN.core.Tensor
-
Accesses the tensor through a single-row matrix with the tensor as the only column.
- assertBackwardValidity() - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Asserts that all components parsed into a call graph with
ModelBuilder.operation(String)
are eventually used by at least oneModelBuilder.out(String)
component. - assertExists(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
- assertFinite() - Method in class mklab.JGNN.core.Tensor
-
Asserts that the tensor holds only finite values.
- assertMatching(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Asserts that the tensor's dimensions match with another tensor.
- assertSize(long) - Method in class mklab.JGNN.core.Tensor
-
Asserts that the tensor's
Tensor.size()
matches the given size. - assertValidName(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
- assign(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Performs a sparse assignment.
- asTensor() - Method in class mklab.JGNN.core.Slice
-
Creates a dense tensor holding the slice's identifiers.
- asTransposed() - Method in class mklab.JGNN.core.Matrix
-
Creates a transposed version of the matrix that accesses the same elements (thus, editing one edits the other) without allocating additional memory.
- asTransposed() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- Attention - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that creates a version of adjacency matrices with column-wise attention involving neighbor similarity. - Attention() - Constructor for class mklab.JGNN.nn.operations.Attention
- autosize(ArrayList<Tensor>) - Method in class mklab.JGNN.nn.NNOperation
- autosize(ArrayList<Tensor>) - Method in class mklab.JGNN.nn.operations.Add
- autosize(ArrayList<Tensor>) - Method in class mklab.JGNN.nn.operations.MatMul
- autosize(List<Tensor>) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Applies the
ModelBuilder.createForwardValidity(List)
method for the given inputs to replace zero tensor dimensions (annotated with ? in symbolic definitions) with a valid dimension size and name, and then checks that all computation outcomes are valid withModelBuilder.assertBackwardValidity()
. - autosize(Tensor...) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Applies the
ModelBuilder.createForwardValidity(List)
method for the given inputs to replace zero tensor dimensions (annotated with ? in symbolic definitions) with a valid dimension size and name, and then checks that all computation outcomes are valid withModelBuilder.assertBackwardValidity()
.
All Classes and Interfaces|All Packages