Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

A

abs() - Method in class mklab.JGNN.core.Tensor
Computes the absolute value of tensor elements.
abs() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
accessCol(long) - Method in class mklab.JGNN.core.Matrix
Retrieves the given column as a tensor.
accessCol(long) - Method in class mklab.JGNN.core.matrix.WrapCols
 
AccessCol - Class in mklab.JGNN.core.matrix
Accesses a column of a Matrix as if it were a dense Tensor.
AccessCol(Matrix, long) - Constructor for class mklab.JGNN.core.matrix.AccessCol
Instantiates a see-through access of a matrix column.
accessColumns() - Method in class mklab.JGNN.core.Matrix
Organizes specific matrix columns to a list of tensors that share entries.
accessColumns(long...) - Method in class mklab.JGNN.core.Matrix
Organizes specific matrix columns to a list of tensors that share entries.
accessColumns(Iterable<Long>) - Method in class mklab.JGNN.core.Matrix
Organizes some matrix columns to a list of tensors that share entries.
accessColumns(Tensor) - Method in class mklab.JGNN.core.Matrix
Organizes matrix columns to a list of tensors that share entries.
accessDim(long, String) - Method in class mklab.JGNN.core.Matrix
Retrieves either the given row or column as a trensor.
accessRow(long) - Method in class mklab.JGNN.core.Matrix
Retrieves the given row as a tensor.
accessRow(long) - Method in class mklab.JGNN.core.matrix.WrapRows
 
AccessRow - Class in mklab.JGNN.core.matrix
Accesses a row of a Matrix as if it were a dense Tensor.
AccessRow(Matrix, long) - Constructor for class mklab.JGNN.core.matrix.AccessRow
Instantiates a see-through access of a matrix row.
accessRows() - Method in class mklab.JGNN.core.Matrix
Organizes matrix rows to a list of tensors that share entries.
accessRows(long...) - Method in class mklab.JGNN.core.Matrix
Organizes specific matrix rows to a list of tensors that share entries.
accessRows(Iterable<Long>) - Method in class mklab.JGNN.core.Matrix
Organizes some matrix rows to a list of tensors that share entries.
accessRows(Tensor) - Method in class mklab.JGNN.core.Matrix
Organizes specific matrix rows to a list of tensors that share entries.
accessSubtensor(long) - Method in class mklab.JGNN.core.Tensor
Wraps a range of elements within a tensor without allocating memory anew.
accessSubtensor(long, long) - Method in class mklab.JGNN.core.Tensor
Wraps a range of elements within a tensor without allocating memory anew.
AccessSubtensor - Class in mklab.JGNN.core.tensor
Wraps a base Tensor by traversing only its elements in a specified range (from begin, up to end-1).
AccessSubtensor(Tensor, long) - Constructor for class mklab.JGNN.core.tensor.AccessSubtensor
Instantiates a see-through access of a tensor elements.
AccessSubtensor(Tensor, long, long) - Constructor for class mklab.JGNN.core.tensor.AccessSubtensor
Instantiates a see-through access of a tensor elements.
Accuracy - Class in mklab.JGNN.nn.loss
Implements an accuracy Loss of row-by-row comparisons.
Accuracy() - Constructor for class mklab.JGNN.nn.loss.Accuracy
Instantiates a row-by-row Accuracy loss.
Adam - Class in mklab.JGNN.nn.optimizers
Thic class implements an Adam Optimizer as explained in the paper: Kingma, Diederik P., and Jimmy Ba.
Adam() - Constructor for class mklab.JGNN.nn.optimizers.Adam
Initializes an NDAdam instance of an Adam optimizer with the default parameters recommended by the papers.
Adam(boolean, double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
Initializes an Adam optimizer with the default parameters recommended in the literature, but allows for the specification of the learning rate and whether NDAdam or simple Adam is used.
Adam(boolean, double, double, double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
Initializes an instance of an Adam optimizer with the default parameters while customizing the variation and learning rate.
Adam(boolean, double, double, double, double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
Initializes an Adam optimizer by customizing all arguments.
Adam(double) - Constructor for class mklab.JGNN.nn.optimizers.Adam
Initializes an NDAdam instance of an Adam optimizer with the default parameters recommended by the papers but allows for the specification of the learning rate.
add(double) - Method in class mklab.JGNN.core.Tensor
 
add(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
add(Tensor) - Method in class mklab.JGNN.core.Tensor
 
add(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
add(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
Add - Class in mklab.JGNN.nn.operations
Implements a NNOperation that adds its two inputs.
Add() - Constructor for class mklab.JGNN.nn.operations.Add
 
addGraph(Matrix, Matrix, Tensor) - Method in class mklab.JGNN.adhoc.train.AGFTraining
 
addInput(Variable) - Method in class mklab.JGNN.nn.Model
Adds to the model's inputs the provided Variable.
addInput(NNOperation) - Method in class mklab.JGNN.nn.inputs.Parameter
 
addInput(NNOperation) - Method in class mklab.JGNN.nn.NNOperation
 
addOutput(NNOperation) - Method in class mklab.JGNN.nn.Model
Adds to the model's output the output of the provided operation.
AGFTraining - Class in mklab.JGNN.adhoc.train
Extends the ModelTraining class to be able to train Model instances for attributed graph functions (AGFs).
AGFTraining() - Constructor for class mklab.JGNN.adhoc.train.AGFTraining
 
aggregate(LSTM) - Method in class mklab.JGNN.nn.operations.LSTM
 
allBaseMatrixTypes(long, long) - Method in class mklab.JGNN.core.MatrixTest
 
allMatrixTypes(long) - Method in class mklab.JGNN.core.MatrixTest
 
allocate(int, Object) - Static method in class mklab.JGNN.core.Memory
 
allocate(long) - Method in class mklab.JGNN.core.empty.EmptyMatrix
 
allocate(long) - Method in class mklab.JGNN.core.empty.EmptyTensor
 
allocate(long) - Method in class mklab.JGNN.core.matrix.AccessCol
 
allocate(long) - Method in class mklab.JGNN.core.matrix.AccessRow
 
allocate(long) - Method in class mklab.JGNN.core.matrix.ColumnRepetition
 
allocate(long) - Method in class mklab.JGNN.core.matrix.DenseMatrix
 
allocate(long) - Method in class mklab.JGNN.core.matrix.Diagonal
 
allocate(long) - Method in class mklab.JGNN.core.matrix.RepeatMatrix
 
allocate(long) - Method in class mklab.JGNN.core.matrix.RowRepetition
 
allocate(long) - Method in class mklab.JGNN.core.matrix.SparseMatrix
 
allocate(long) - Method in class mklab.JGNN.core.matrix.SparseSymmetric
Deprecated.
 
allocate(long) - Method in class mklab.JGNN.core.matrix.TransposedMatrix
 
allocate(long) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
 
allocate(long) - Method in class mklab.JGNN.core.matrix.WrapCols
 
allocate(long) - Method in class mklab.JGNN.core.matrix.WrapRows
 
allocate(long) - Method in class mklab.JGNN.core.tensor.AccessSubtensor
 
allocate(long) - Method in class mklab.JGNN.core.Tensor
 
allocate(long) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
allocate(long) - Method in class mklab.JGNN.core.tensor.RepeatTensor
 
allocate(long) - Method in class mklab.JGNN.core.tensor.SparseTensor
 
allocate(long) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
allSquareMatrixTypes(long) - Method in class mklab.JGNN.core.MatrixTest
 
allTensorTypes() - Method in class mklab.JGNN.core.TensorTest
 
allTensorTypes(long) - Method in class mklab.JGNN.core.TensorTest
 
allTensorTypesRandom(long) - Method in class mklab.JGNN.core.TensorTest
 
apply(Model) - Method in class mklab.JGNN.nn.Initializer
Applies the initializer to a given model's parameters.
apply(Model) - Method in class mklab.JGNN.nn.initializers.VariancePreservingInitializer
 
APPNP - Class in nodeClassification
Demonstrates classification with an APPNP GNN.
APPNP() - Constructor for class nodeClassification.APPNP
 
argmax() - Method in class mklab.JGNN.core.Tensor
Computes the position of the maximum tensor element.
argmin() - Method in class mklab.JGNN.core.Tensor
Computes the position of the minimum tensor element.
asColumn() - Method in class mklab.JGNN.core.Tensor
Accesses the tensor through a single-column matrix with the tensor as the only row.
asRow() - Method in class mklab.JGNN.core.Tensor
Accesses the tensor through a single-row matrix with the tensor as the only column.
assertBackwardValidity() - Method in class mklab.JGNN.adhoc.ModelBuilder
Asserts that all components parsed into a call graph with ModelBuilder.operation(String) are eventually used by at least one ModelBuilder.out(String) component.
assertExists(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
 
assertFinite() - Method in class mklab.JGNN.core.Tensor
Asserts that the tensor holds only finite values.
assertMatching(Tensor) - Method in class mklab.JGNN.core.Tensor
Asserts that the tensor's dimensions match with another tensor.
assertSize(long) - Method in class mklab.JGNN.core.Tensor
Asserts that the tensor's Tensor.size() matches the given size.
assertValidName(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
 
assign(Tensor) - Method in class mklab.JGNN.core.Tensor
Performs a sparse assignment.
asTensor() - Method in class mklab.JGNN.core.Slice
Creates a dense tensor holding the slice's identifiers.
asTransposed() - Method in class mklab.JGNN.core.Matrix
Creates a transposed version of the matrix that accesses the same elements (thus, editing one edits the other) without allocating additional memory.
asTransposed() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
 
Attention - Class in mklab.JGNN.nn.operations
Implements a NNOperation that creates a version of adjacency matrices with column-wise attention involving neighbor similarity.
Attention() - Constructor for class mklab.JGNN.nn.operations.Attention
 
autosize(ArrayList<Tensor>) - Method in class mklab.JGNN.nn.NNOperation
 
autosize(ArrayList<Tensor>) - Method in class mklab.JGNN.nn.operations.Add
 
autosize(ArrayList<Tensor>) - Method in class mklab.JGNN.nn.operations.MatMul
 
autosize(List<Tensor>) - Method in class mklab.JGNN.adhoc.ModelBuilder
Applies the ModelBuilder.createForwardValidity(List) method for the given inputs to replace zero tensor dimensions (annotated with ? in symbolic definitions) with a valid dimension size and name, and then checks that all computation outcomes are valid with ModelBuilder.assertBackwardValidity().
autosize(Tensor...) - Method in class mklab.JGNN.adhoc.ModelBuilder
Applies the ModelBuilder.createForwardValidity(List) method for the given inputs to replace zero tensor dimensions (annotated with ? in symbolic definitions) with a valid dimension size and name, and then checks that all computation outcomes are valid with ModelBuilder.assertBackwardValidity().
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages