Index
All Classes and Interfaces|All Packages
V
- validationLoss - Variable in class mklab.JGNN.adhoc.ModelTraining
- values - Variable in class mklab.JGNN.core.tensor.DenseTensor
- values - Variable in class mklab.JGNN.core.tensor.VectorizedTensor
- var(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a component with the given name to be used as an input of the managed model.
- var(String) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- var(String) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
- Variable - Class in mklab.JGNN.nn.inputs
-
Implements a
NNOperationthat representsModelinputs. - Variable() - Constructor for class mklab.JGNN.nn.inputs.Variable
- VariancePreservingInitializer - Class in mklab.JGNN.nn.initializers
-
This class describes a broad class of
Initializerstrategies, in which dense neural layer initialization is controlled so that variance is mostly preserved from inputs to outputs to avoid vanishing or exploding gradients in the first training runs. - VariancePreservingInitializer() - Constructor for class mklab.JGNN.nn.initializers.VariancePreservingInitializer
- vectorization - Static variable in class mklab.JGNN.core.Tensor
- VectorizedMatrix - Class in mklab.JGNN.core.matrix
-
Implements a dense
Matrixwhere all elements are stored in memory. - VectorizedMatrix(long, long) - Constructor for class mklab.JGNN.core.matrix.VectorizedMatrix
-
Generates a dense matrix with the designated number of rows and columns.
- VectorizedTensor - Class in mklab.JGNN.core.tensor
-
This class provides a dense
Tensorthat wraps an array of doubles. - VectorizedTensor() - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
- VectorizedTensor(double...) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
- VectorizedTensor(long) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
-
Constructs a dense tensor holding zero values.
- VectorizedTensor(String) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
-
Reconstructs a serialized Tensor (i.e.
- VectorizedTensor(Iterator<? extends Number>) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
-
Constructs a dense tensor from an iterator holding that outputs its values.
- verbose - Variable in class mklab.JGNN.adhoc.ModelTraining
- VerboseLoss - Class in mklab.JGNN.nn.loss.report
-
Implements a
Lossthat wraps other losses and outputs their value during training to an output stream (toSystem.outby default). - VerboseLoss(Loss...) - Constructor for class mklab.JGNN.nn.loss.report.VerboseLoss
-
Instantiates a
VerboseLossgiven one or more comma-separated base losses to be wrapped. - view() - Method in class mklab.JGNN.nn.NNOperation
-
Retrieves a string that views internal data being processed by the current thread, including gradients.
All Classes and Interfaces|All Packages