Index
All Classes and Interfaces|All Packages
V
- validationLoss - Variable in class mklab.JGNN.adhoc.ModelTraining
- values - Variable in class mklab.JGNN.core.tensor.DenseTensor
- values - Variable in class mklab.JGNN.core.tensor.VectorizedTensor
- var(String) - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Declares a component with the given name to be used as an input of the managed model.
- var(String) - Method in class mklab.JGNN.adhoc.parsers.LayeredBuilder
- var(String) - Method in class mklab.JGNN.adhoc.parsers.Neuralang
- Variable - Class in mklab.JGNN.nn.inputs
-
Implements a
NNOperation
that representsModel
inputs. - Variable() - Constructor for class mklab.JGNN.nn.inputs.Variable
- VariancePreservingInitializer - Class in mklab.JGNN.nn.initializers
-
This class describes a broad class of
Initializer
strategies, in which dense neural layer initialization is controlled so that variance is mostly preserved from inputs to outputs to avoid vanishing or exploding gradients in the first training runs. - VariancePreservingInitializer() - Constructor for class mklab.JGNN.nn.initializers.VariancePreservingInitializer
- vectorization - Static variable in class mklab.JGNN.core.Tensor
- VectorizedMatrix - Class in mklab.JGNN.core.matrix
-
Implements a dense
Matrix
where all elements are stored in memory. - VectorizedMatrix(long, long) - Constructor for class mklab.JGNN.core.matrix.VectorizedMatrix
-
Generates a dense matrix with the designated number of rows and columns.
- VectorizedTensor - Class in mklab.JGNN.core.tensor
-
This class provides a dense
Tensor
that wraps an array of doubles. - VectorizedTensor() - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
- VectorizedTensor(double...) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
- VectorizedTensor(long) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
-
Constructs a dense tensor holding zero values.
- VectorizedTensor(String) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
-
Reconstructs a serialized Tensor (i.e.
- VectorizedTensor(Iterator<? extends Number>) - Constructor for class mklab.JGNN.core.tensor.VectorizedTensor
-
Constructs a dense tensor from an iterator holding that outputs its values.
- verbose - Variable in class mklab.JGNN.adhoc.ModelTraining
- VerboseLoss - Class in mklab.JGNN.nn.loss.report
-
Implements a
Loss
that wraps other losses and outputs their value during training to an output stream (toSystem.out
by default). - VerboseLoss(Loss...) - Constructor for class mklab.JGNN.nn.loss.report.VerboseLoss
-
Instantiates a
VerboseLoss
given one or more comma-separated base losses to be wrapped. - view() - Method in class mklab.JGNN.nn.NNOperation
-
Retrieves a string that views internal data being processed by the current thread, including gradients.
All Classes and Interfaces|All Packages