Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

T

tanh(double) - Static method in interface mklab.JGNN.core.util.Loss
The tanh activation (exp(x)-exp(-x))/(exp(x)+exp(-x))
tanh(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
Applies Loss.tanh(double) element-by-element.
Tanh - Class in mklab.JGNN.nn.activations
Implements a NNOperation that performs a tanh transformation of its single input.
Tanh() - Constructor for class mklab.JGNN.nn.activations.Tanh
 
tanhDerivative(double) - Static method in interface mklab.JGNN.core.util.Loss
The derivative of the Loss.tanh(double) function.
tanhDerivative(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
Applies Loss.tanhDerivative(double) function.
tapeError - Variable in class mklab.JGNN.nn.NNOperation.ThreadData
 
tensor - Variable in class mklab.JGNN.core.matrix.VectorizedMatrix
 
tensor - Variable in class mklab.JGNN.nn.inputs.Parameter
 
Tensor - Class in mklab.JGNN.core
This class provides a native java implementation of Tensor functionalities.
Tensor() - Constructor for class mklab.JGNN.core.Tensor
 
Tensor(long) - Constructor for class mklab.JGNN.core.Tensor
Construct that creates a tensor of zeros given its number of elements
TensorTest - Class in mklab.JGNN.core
 
TensorTest - Class in mklab.JGNN
 
TensorTest() - Constructor for class mklab.JGNN.core.TensorTest
 
TensorTest() - Constructor for class mklab.JGNN.TensorTest
 
testAddition() - Method in class mklab.JGNN.core.MatrixTest
 
testAsColum() - Method in class mklab.JGNN.core.TensorTest
 
testAsRow() - Method in class mklab.JGNN.core.TensorTest
 
testAssertFinite() - Method in class mklab.JGNN.core.TensorTest
 
testAssertNotFinite() - Method in class mklab.JGNN.core.TensorTest
 
testAssertSize() - Method in class mklab.JGNN.core.TensorTest
 
testCopy() - Method in class mklab.JGNN.core.TensorTest
 
testDenseTensorSerialization() - Method in class mklab.JGNN.core.TensorTest
 
testDescription() - Method in class mklab.JGNN.core.MatrixTest
 
testDimensions() - Method in class mklab.JGNN.core.MatrixTest
 
testDot() - Method in class mklab.JGNN.core.TensorTest
 
testDoubleConversion() - Method in class mklab.JGNN.core.MatrixTest
 
testDoubleConversion() - Method in class mklab.JGNN.core.TensorTest
 
testFiniteDerivative() - Method in class mklab.JGNN.core.util.LossTest
 
testFiniteLoss() - Method in class mklab.JGNN.core.util.LossTest
 
testGetOverflow() - Method in class mklab.JGNN.core.TensorTest
 
testGetUnderflow() - Method in class mklab.JGNN.core.TensorTest
 
testImpossibleMultiplication() - Method in class mklab.JGNN.core.TensorTest
 
testIncompatibleOperation() - Method in class mklab.JGNN.core.TensorTest
 
testInvalidSubtensorConstructorArgument() - Method in class mklab.JGNN.core.TensorTest
 
testInverse() - Method in class mklab.JGNN.core.TensorTest
 
testLargeCrossEntropyDerivativeLabel() - Method in class mklab.JGNN.core.util.LossTest
 
testMatrixMultiplication() - Method in class mklab.JGNN.core.MatrixTest
 
testMultiplication() - Method in class mklab.JGNN.core.MatrixTest
 
testMultiplicationWithZero() - Method in class mklab.JGNN.core.TensorTest
 
testNegativeCrossEntropyDerivativeLabel() - Method in class mklab.JGNN.core.util.LossTest
 
testNegativeCrossEntropyDerivativePrediction() - Method in class mklab.JGNN.core.util.LossTest
 
testNewTensorCreation() - Method in class mklab.JGNN.core.TensorTest
 
testNonbinaryCrossEntropyDerivativeLabel() - Method in class mklab.JGNN.core.util.LossTest
 
testNormalization() - Method in class mklab.JGNN.core.TensorTest
 
testNullTensorDeerialization() - Method in class mklab.JGNN.core.TensorTest
 
testNumeric() - Method in class mklab.JGNN.TensorTest
 
testNumNonZero() - Method in class mklab.JGNN.core.TensorTest
 
testOneHotNumNonZero() - Method in class mklab.JGNN.core.TensorTest
 
testPut() - Method in class mklab.JGNN.core.MatrixTest
 
testPutInfinity() - Method in class mklab.JGNN.core.TensorTest
 
testPutNan() - Method in class mklab.JGNN.core.TensorTest
 
testPutOverflow() - Method in class mklab.JGNN.core.TensorTest
 
testPutUnderflow() - Method in class mklab.JGNN.core.TensorTest
 
testRange() - Method in class mklab.JGNN.core.TensorTest
 
testRange2D() - Method in class mklab.JGNN.core.MatrixTest
 
testRange2DOutOfBounds() - Method in class mklab.JGNN.core.MatrixTest
 
testRangeOutOfBounds() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensor() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensorCopy() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensorMultiplication() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensorNonFinite() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensorOverflow() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensorPut() - Method in class mklab.JGNN.core.TensorTest
 
testRepeatTensorUnderflow() - Method in class mklab.JGNN.core.TensorTest
 
testSelfOperations() - Method in class mklab.JGNN.core.TensorTest
 
testSetToRandom() - Method in class mklab.JGNN.core.TensorTest
 
testSubtensorCopy() - Method in class mklab.JGNN.core.TensorTest
 
testSubtensorOriginalAccess() - Method in class mklab.JGNN.core.TensorTest
 
testSubtensorWrongEnd() - Method in class mklab.JGNN.core.TensorTest
 
testSubtensorWrongRange() - Method in class mklab.JGNN.core.TensorTest
 
testSubtensorWrongStart() - Method in class mklab.JGNN.core.TensorTest
 
testSummaryStatistics() - Method in class mklab.JGNN.core.TensorTest
 
testTensorDimensions() - Method in class mklab.JGNN.core.TensorTest
 
testToProbability() - Method in class mklab.JGNN.core.TensorTest
 
testToString() - Method in class mklab.JGNN.core.TensorTest
 
testTransform() - Method in class mklab.JGNN.core.MatrixTest
 
testTransposition() - Method in class mklab.JGNN.core.MatrixTest
 
testTripleDot() - Method in class mklab.JGNN.core.TensorTest
 
testZeroCopy() - Method in class mklab.JGNN.core.TensorTest
 
ThreadData() - Constructor for class mklab.JGNN.nn.NNOperation.ThreadData
 
ThreadPool - Class in mklab.JGNN.core
This class provides thread execution pool utilities while keeping track of thread identifiers for use by thread-specific NNOperation.
ThreadPool(int) - Constructor for class mklab.JGNN.core.ThreadPool
 
To - Class in mklab.JGNN.nn.operations
Implements a NNOperation that lists the second element of the 2D matrix element iterator.
To() - Constructor for class mklab.JGNN.nn.operations.To
 
toArray() - Method in class mklab.JGNN.core.Tensor
Retrieves a representation of the Tensor as an array of doubles.
toDense() - Method in class mklab.JGNN.core.Matrix
Creates a copy of the matrix organized as a dense matrix.
toDouble() - Method in class mklab.JGNN.core.Tensor
Converts a tensor of Tensor.size()==1 to double.
toNonZeroString() - Method in class mklab.JGNN.core.Matrix
 
toProbability() - Method in class mklab.JGNN.core.Tensor
 
toSparse() - Method in class mklab.JGNN.core.Matrix
Creates a copy of the matrix organized as a sparse matrix.
toString() - Method in class mklab.JGNN.core.Matrix
 
toString() - Method in class mklab.JGNN.core.Tensor
A string serialization of the tensor that can be used by the constructor DenseTensor(String) to create an identical copy.
toString() - Method in class mklab.JGNN.core.util.FastEntry
 
train(ModelTraining) - Method in class mklab.JGNN.nn.Model
Trains the model by calling ModelTraining.train(Model).
train(ModelTraining, Matrix, Matrix, Slice, Slice) - Method in class mklab.JGNN.nn.Model
Deprecated.
Training data have been moved inside ModelTraining instances to allow a uniform interface for all training scheme automations. Use Model.train(ModelTraining) instead.
train(Tensor[], Tensor) - Method in class mklab.JGNN.nn.operations.LSTM
 
train(Loss, Optimizer, List<Tensor>, List<Tensor>) - Method in class mklab.JGNN.nn.Model
Performs the training of #train(Optimizer, List, List, List) for unit weights.
train(Loss, Optimizer, List<Tensor>, List<Tensor>, List<Tensor>) - Method in class mklab.JGNN.nn.Model
Performs one parameter adjustment step (e.g.
train(Model) - Method in class mklab.JGNN.adhoc.ModelTraining
Trains the parameters of a Model based on current settings and the data.
train(Model, Matrix, Matrix, Slice, Slice) - Method in class mklab.JGNN.adhoc.ModelTraining
Deprecated.
This method's full implementation has been moved to ModelTraining.train(Model)
trainOnOutputError(Tensor[], Tensor) - Method in class mklab.JGNN.nn.operations.LSTM
 
trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.inputs.Constant
 
trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.inputs.Parameter
 
trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.inputs.Variable
 
trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.NNOperation
 
trainTowardsZero(Optimizer, List<Tensor>) - Method in class mklab.JGNN.nn.Model
Is equivalent to calling Model.train(Loss, Optimizer, List, List) for new Zero() loss.
TrajectoryData - Class in graphClassification
This class generates trajectory graph labels.
TrajectoryData(int) - Constructor for class graphClassification.TrajectoryData
 
transform(Tensor) - Method in class mklab.JGNN.core.Matrix
Performs the linear algebra transformation A*x where A is this matrix and x a vector
Transpose - Class in mklab.JGNN.nn.operations
Implements a NNOperation that performs matrix transposition.
Transpose() - Constructor for class mklab.JGNN.nn.operations.Transpose
 
transposed() - Method in class mklab.JGNN.core.Matrix
Creates a transposed copy of the matrix.
Transposed1DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.TransposedMatrix.Transposed1DIterator
 
Transposed2DIterator(Iterator<Map.Entry<Long, Long>>) - Constructor for class mklab.JGNN.core.matrix.TransposedMatrix.Transposed2DIterator
 
TransposedMatrix - Class in mklab.JGNN.core.matrix
Generates a transposed version of a base matrix, with which it shares elements.
TransposedMatrix(Matrix) - Constructor for class mklab.JGNN.core.matrix.TransposedMatrix
 
TransposedMatrix.Transposed1DIterator - Class in mklab.JGNN.core.matrix
 
TransposedMatrix.Transposed2DIterator - Class in mklab.JGNN.core.matrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.empty.EmptyMatrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.empty.EmptyTensor
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessCol
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessRow
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.ColumnRepetition
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.DenseMatrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.Diagonal
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.RepeatMatrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.RowRepetition
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.SparseMatrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
Deprecated.
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapCols
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapRows
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.AccessSubtensor
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.DenseTensor
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.RepeatTensor
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.SparseTensor
 
traverseNonZeroElements() - Method in class mklab.JGNN.core.Tensor
Retrieves positions within the tensor that may hold non-zero elements.
traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
tutorial - package tutorial
 
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages