Index
All Classes and Interfaces|All Packages
T
- tanh(double) - Static method in interface mklab.JGNN.core.util.Loss
-
The tanh activation (exp(x)-exp(-x))/(exp(x)+exp(-x))
- tanh(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
-
Applies
Loss.tanh(double)
element-by-element. - Tanh - Class in mklab.JGNN.nn.activations
-
Implements a
NNOperation
that performs a tanh transformation of its single input. - Tanh() - Constructor for class mklab.JGNN.nn.activations.Tanh
- tanhDerivative(double) - Static method in interface mklab.JGNN.core.util.Loss
-
The derivative of the
Loss.tanh(double)
function. - tanhDerivative(Tensor) - Static method in interface mklab.JGNN.core.util.Loss
-
Applies
Loss.tanhDerivative(double)
function. - tapeError - Variable in class mklab.JGNN.nn.NNOperation.ThreadData
- tensor - Variable in class mklab.JGNN.core.matrix.VectorizedMatrix
- tensor - Variable in class mklab.JGNN.nn.inputs.Parameter
- Tensor - Class in mklab.JGNN.core
-
This class provides a native java implementation of Tensor functionalities.
- Tensor() - Constructor for class mklab.JGNN.core.Tensor
- Tensor(long) - Constructor for class mklab.JGNN.core.Tensor
-
Construct that creates a tensor of zeros given its number of elements
- TensorTest - Class in mklab.JGNN.core
- TensorTest - Class in mklab.JGNN
- TensorTest() - Constructor for class mklab.JGNN.core.TensorTest
- TensorTest() - Constructor for class mklab.JGNN.TensorTest
- testAddition() - Method in class mklab.JGNN.core.MatrixTest
- testAsColum() - Method in class mklab.JGNN.core.TensorTest
- testAsRow() - Method in class mklab.JGNN.core.TensorTest
- testAssertFinite() - Method in class mklab.JGNN.core.TensorTest
- testAssertNotFinite() - Method in class mklab.JGNN.core.TensorTest
- testAssertSize() - Method in class mklab.JGNN.core.TensorTest
- testCopy() - Method in class mklab.JGNN.core.TensorTest
- testDenseTensorSerialization() - Method in class mklab.JGNN.core.TensorTest
- testDescription() - Method in class mklab.JGNN.core.MatrixTest
- testDimensions() - Method in class mklab.JGNN.core.MatrixTest
- testDot() - Method in class mklab.JGNN.core.TensorTest
- testDoubleConversion() - Method in class mklab.JGNN.core.MatrixTest
- testDoubleConversion() - Method in class mklab.JGNN.core.TensorTest
- testFiniteDerivative() - Method in class mklab.JGNN.core.util.LossTest
- testFiniteLoss() - Method in class mklab.JGNN.core.util.LossTest
- testGetOverflow() - Method in class mklab.JGNN.core.TensorTest
- testGetUnderflow() - Method in class mklab.JGNN.core.TensorTest
- testImpossibleMultiplication() - Method in class mklab.JGNN.core.TensorTest
- testIncompatibleOperation() - Method in class mklab.JGNN.core.TensorTest
- testInvalidSubtensorConstructorArgument() - Method in class mklab.JGNN.core.TensorTest
- testInverse() - Method in class mklab.JGNN.core.TensorTest
- testLargeCrossEntropyDerivativeLabel() - Method in class mklab.JGNN.core.util.LossTest
- testMatrixMultiplication() - Method in class mklab.JGNN.core.MatrixTest
- testMultiplication() - Method in class mklab.JGNN.core.MatrixTest
- testMultiplicationWithZero() - Method in class mklab.JGNN.core.TensorTest
- testNegativeCrossEntropyDerivativeLabel() - Method in class mklab.JGNN.core.util.LossTest
- testNegativeCrossEntropyDerivativePrediction() - Method in class mklab.JGNN.core.util.LossTest
- testNewTensorCreation() - Method in class mklab.JGNN.core.TensorTest
- testNonbinaryCrossEntropyDerivativeLabel() - Method in class mklab.JGNN.core.util.LossTest
- testNormalization() - Method in class mklab.JGNN.core.TensorTest
- testNullTensorDeerialization() - Method in class mklab.JGNN.core.TensorTest
- testNumeric() - Method in class mklab.JGNN.TensorTest
- testNumNonZero() - Method in class mklab.JGNN.core.TensorTest
- testOneHotNumNonZero() - Method in class mklab.JGNN.core.TensorTest
- testPut() - Method in class mklab.JGNN.core.MatrixTest
- testPutInfinity() - Method in class mklab.JGNN.core.TensorTest
- testPutNan() - Method in class mklab.JGNN.core.TensorTest
- testPutOverflow() - Method in class mklab.JGNN.core.TensorTest
- testPutUnderflow() - Method in class mklab.JGNN.core.TensorTest
- testRange() - Method in class mklab.JGNN.core.TensorTest
- testRange2D() - Method in class mklab.JGNN.core.MatrixTest
- testRange2DOutOfBounds() - Method in class mklab.JGNN.core.MatrixTest
- testRangeOutOfBounds() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensor() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensorCopy() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensorMultiplication() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensorNonFinite() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensorOverflow() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensorPut() - Method in class mklab.JGNN.core.TensorTest
- testRepeatTensorUnderflow() - Method in class mklab.JGNN.core.TensorTest
- testSelfOperations() - Method in class mklab.JGNN.core.TensorTest
- testSetToRandom() - Method in class mklab.JGNN.core.TensorTest
- testSubtensorCopy() - Method in class mklab.JGNN.core.TensorTest
- testSubtensorOriginalAccess() - Method in class mklab.JGNN.core.TensorTest
- testSubtensorWrongEnd() - Method in class mklab.JGNN.core.TensorTest
- testSubtensorWrongRange() - Method in class mklab.JGNN.core.TensorTest
- testSubtensorWrongStart() - Method in class mklab.JGNN.core.TensorTest
- testSummaryStatistics() - Method in class mklab.JGNN.core.TensorTest
- testTensorDimensions() - Method in class mklab.JGNN.core.TensorTest
- testToProbability() - Method in class mklab.JGNN.core.TensorTest
- testToString() - Method in class mklab.JGNN.core.TensorTest
- testTransform() - Method in class mklab.JGNN.core.MatrixTest
- testTransposition() - Method in class mklab.JGNN.core.MatrixTest
- testTripleDot() - Method in class mklab.JGNN.core.TensorTest
- testZeroCopy() - Method in class mklab.JGNN.core.TensorTest
- ThreadData() - Constructor for class mklab.JGNN.nn.NNOperation.ThreadData
- ThreadPool - Class in mklab.JGNN.core
-
This class provides thread execution pool utilities while keeping track of thread identifiers for use by thread-specific
NNOperation
. - ThreadPool(int) - Constructor for class mklab.JGNN.core.ThreadPool
- To - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that lists the second element of the 2D matrix element iterator. - To() - Constructor for class mklab.JGNN.nn.operations.To
- toArray() - Method in class mklab.JGNN.core.Tensor
-
Retrieves a representation of the Tensor as an array of doubles.
- toDense() - Method in class mklab.JGNN.core.Matrix
-
Creates a copy of the matrix organized as a dense matrix.
- toDouble() - Method in class mklab.JGNN.core.Tensor
-
Converts a tensor of
Tensor.size()
==1 to double. - toNonZeroString() - Method in class mklab.JGNN.core.Matrix
- toProbability() - Method in class mklab.JGNN.core.Tensor
- toSparse() - Method in class mklab.JGNN.core.Matrix
-
Creates a copy of the matrix organized as a sparse matrix.
- toString() - Method in class mklab.JGNN.core.Matrix
- toString() - Method in class mklab.JGNN.core.Tensor
-
A string serialization of the tensor that can be used by the constructor
DenseTensor(String)
to create an identical copy. - toString() - Method in class mklab.JGNN.core.util.FastEntry
- train(ModelTraining) - Method in class mklab.JGNN.nn.Model
-
Trains the model by calling
ModelTraining.train(Model)
. - train(ModelTraining, Matrix, Matrix, Slice, Slice) - Method in class mklab.JGNN.nn.Model
-
Deprecated.
- train(Tensor[], Tensor) - Method in class mklab.JGNN.nn.operations.LSTM
- train(Loss, Optimizer, List<Tensor>, List<Tensor>) - Method in class mklab.JGNN.nn.Model
-
Performs the training of
#train(Optimizer, List, List, List)
for unit weights. - train(Loss, Optimizer, List<Tensor>, List<Tensor>, List<Tensor>) - Method in class mklab.JGNN.nn.Model
-
Performs one parameter adjustment step (e.g.
- train(Model) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Trains the parameters of a
Model
based on current settings and the data. - train(Model, Matrix, Matrix, Slice, Slice) - Method in class mklab.JGNN.adhoc.ModelTraining
-
Deprecated.This method's full implementation has been moved to
ModelTraining.train(Model)
- trainOnOutputError(Tensor[], Tensor) - Method in class mklab.JGNN.nn.operations.LSTM
- trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.inputs.Constant
- trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.inputs.Parameter
- trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.inputs.Variable
- trainParameters(Optimizer, Tensor) - Method in class mklab.JGNN.nn.NNOperation
- trainTowardsZero(Optimizer, List<Tensor>) - Method in class mklab.JGNN.nn.Model
-
Is equivalent to calling
Model.train(Loss, Optimizer, List, List)
for new Zero() loss. - TrajectoryData - Class in graphClassification
-
This class generates trajectory graph labels.
- TrajectoryData(int) - Constructor for class graphClassification.TrajectoryData
- transform(Tensor) - Method in class mklab.JGNN.core.Matrix
-
Performs the linear algebra transformation A*x where A is this matrix and x a vector
- Transpose - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that performs matrix transposition. - Transpose() - Constructor for class mklab.JGNN.nn.operations.Transpose
- transposed() - Method in class mklab.JGNN.core.Matrix
-
Creates a transposed copy of the matrix.
- Transposed1DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.TransposedMatrix.Transposed1DIterator
- Transposed2DIterator(Iterator<Map.Entry<Long, Long>>) - Constructor for class mklab.JGNN.core.matrix.TransposedMatrix.Transposed2DIterator
- TransposedMatrix - Class in mklab.JGNN.core.matrix
-
Generates a transposed version of a base matrix, with which it shares elements.
- TransposedMatrix(Matrix) - Constructor for class mklab.JGNN.core.matrix.TransposedMatrix
- TransposedMatrix.Transposed1DIterator - Class in mklab.JGNN.core.matrix
- TransposedMatrix.Transposed2DIterator - Class in mklab.JGNN.core.matrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.empty.EmptyMatrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.empty.EmptyTensor
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessCol
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.AccessRow
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.ColumnRepetition
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.DenseMatrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.Diagonal
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.RepeatMatrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.RowRepetition
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.SparseMatrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapCols
- traverseNonZeroElements() - Method in class mklab.JGNN.core.matrix.WrapRows
- traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.AccessSubtensor
- traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.DenseTensor
- traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.RepeatTensor
- traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.SparseTensor
- traverseNonZeroElements() - Method in class mklab.JGNN.core.Tensor
-
Retrieves positions within the tensor that may hold non-zero elements.
- traverseNonZeroElements() - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- tutorial - package tutorial
All Classes and Interfaces|All Packages
Model.train(ModelTraining)
instead.