Index
All Classes and Interfaces|All Packages
N
- negative() - Method in class mklab.JGNN.core.tensor.DenseTensor
- negative() - Method in class mklab.JGNN.core.Tensor
-
Computes the negative of tensor elements.
- Neuralang - Class in mklab.JGNN.adhoc.parsers
-
Extends the base
ModelBuilder
with the full capabilities of the Neuralang scripting language. - Neuralang() - Constructor for class mklab.JGNN.adhoc.parsers.Neuralang
- NExp - Class in mklab.JGNN.nn.activations
-
Implements a
NNOperation
that performs an exponential transformation of its single input, but only on the non-zero elements. - NExp() - Constructor for class mklab.JGNN.nn.activations.NExp
- next() - Method in class mklab.JGNN.core.matrix.ColumnRepetition.Repeat1DIterator
- next() - Method in class mklab.JGNN.core.matrix.ColumnRepetition.Repeat2DIterator
- next() - Method in class mklab.JGNN.core.matrix.Diagonal.Diagonal1DIterator
- next() - Method in class mklab.JGNN.core.matrix.Diagonal.Diagonal2DIterator
- next() - Method in class mklab.JGNN.core.matrix.RowRepetition.Repeat1DIterator
- next() - Method in class mklab.JGNN.core.matrix.RowRepetition.Repeat2DIterator
- next() - Method in class mklab.JGNN.core.matrix.SparseMatrix.Sparse2DIterator
- next() - Method in class mklab.JGNN.core.matrix.TransposedMatrix.Transposed1DIterator
- next() - Method in class mklab.JGNN.core.matrix.TransposedMatrix.Transposed2DIterator
- next() - Method in class mklab.JGNN.core.matrix.WrapCols.Wrap1DIterator
- next() - Method in class mklab.JGNN.core.matrix.WrapCols.Wrap2DIterator
- next() - Method in class mklab.JGNN.core.matrix.WrapRows.Wrap1DIterator
- next() - Method in class mklab.JGNN.core.matrix.WrapRows.Wrap2DIterator
- next() - Method in class mklab.JGNN.core.util.Range
- next() - Method in class mklab.JGNN.core.util.Range2D
- NN - Class in tutorial
-
This implementation covers code of the Neural Networks tutorial.
- NN() - Constructor for class tutorial.NN
- NNOperation - Class in mklab.JGNN.nn
-
This class defines an abstract neural network operation with forward and backpropagation capabilities.
- NNOperation() - Constructor for class mklab.JGNN.nn.NNOperation
- NNOperation.ThreadData - Class in mklab.JGNN.nn
- nodeClassification - package nodeClassification
- nodeDimensionName - Variable in class mklab.JGNN.adhoc.IdConverter
- norm() - Method in class mklab.JGNN.core.Tensor
- Normal - Class in mklab.JGNN.core.distribution
-
Implements a Normal
Distribution
of given mean and standard deviation. - Normal() - Constructor for class mklab.JGNN.core.distribution.Normal
-
Instantiates a normal distribution with zero mean and standard deviation equal to 1.
- Normal(double, double) - Constructor for class mklab.JGNN.core.distribution.Normal
-
Instantiates a normal distribution with a given mean and standard deviation.
- normalized() - Method in class mklab.JGNN.core.Tensor
- numBatches - Variable in class mklab.JGNN.adhoc.ModelTraining
All Classes and Interfaces|All Packages