Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

D

data() - Method in class mklab.JGNN.nn.NNOperation
 
Dataset - Class in mklab.JGNN.adhoc
This class provides the backbone with which to define datasets.
Dataset() - Constructor for class mklab.JGNN.adhoc.Dataset
 
debugging - Variable in class mklab.JGNN.nn.NNOperation
 
DenseMatrix - Class in mklab.JGNN.core.matrix
Implements a dense Matrix where all elements are stored in memory.
DenseMatrix(long, long) - Constructor for class mklab.JGNN.core.matrix.DenseMatrix
Generates a dense matrix with the designated number of rows and columns.
DenseTensor - Class in mklab.JGNN.core.tensor
This class provides a dense Tensor that wraps an array of doubles.
DenseTensor() - Constructor for class mklab.JGNN.core.tensor.DenseTensor
 
DenseTensor(double...) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
 
DenseTensor(long) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
Constructs a dense tensor holding zero values.
DenseTensor(String) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
Reconstructs a serialized Tensor (i.e.
DenseTensor(Iterator<? extends Number>) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
Constructs a dense tensor from an iterator holding that outputs its values.
density() - Method in class mklab.JGNN.core.Tensor
Provides the memory allocation density of Tensor.getNonZeroElements() compare to the size of the tensor.
derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.Accuracy
 
derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.BinaryCrossEntropy
 
derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.CategoricalCrossEntropy
 
derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.Loss
Provides the derivative of a loss function at its evaluation point.
derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
 
describe() - Method in class mklab.JGNN.adhoc.ModelBuilder
Creates a description of the builded model's internal execution graph.
describe() - Method in class mklab.JGNN.core.Matrix
 
describe() - Method in class mklab.JGNN.core.matrix.SparseMatrix
 
describe() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
Deprecated.
 
describe() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
 
describe() - Method in class mklab.JGNN.core.Tensor
Describes the type, size and other characteristics of the tensor.
describe() - Method in class mklab.JGNN.nn.NNOperation
Retrieves a concise description of the operation that shows metadata and potential data descriptions processed by the current thread.
determineZeroCopy(Matrix, long, long, long) - Method in class mklab.JGNN.core.Matrix
 
determineZeroCopy(Tensor) - Method in class mklab.JGNN.core.Tensor
Automatically determines which between the tensor and a competitor is chosen create zero copies for two-argument operations.
Diagonal - Class in mklab.JGNN.core.matrix
Implements a square matrix whose diagonal elements are determined by the correspond values of an underlying tensor and off-diagonal elements are zero.
Diagonal(Tensor) - Constructor for class mklab.JGNN.core.matrix.Diagonal
 
Diagonal.Diagonal1DIterator - Class in mklab.JGNN.core.matrix
 
Diagonal.Diagonal2DIterator - Class in mklab.JGNN.core.matrix
 
Diagonal1DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.Diagonal.Diagonal1DIterator
 
Diagonal2DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.Diagonal.Diagonal2DIterator
 
Distribution - Interface in mklab.JGNN.core
This interface abstracts a probability distribution that can be passed to Tensor.setToRandom(Distribution) for random tensor initialization.
dot(Tensor) - Method in class mklab.JGNN.core.Tensor
Performs the dot product between this and another tensor.
dot(Tensor, Tensor) - Method in class mklab.JGNN.core.Tensor
Performs the triple dot product between this and two other tensors.
downloadIfNotExists(String, String) - Method in class mklab.JGNN.adhoc.Dataset
 
Dropout - Class in mklab.JGNN.nn.operations
Implements a NNOperation that converts its first argument to a ColumnRepetition matrix with a number of columns equal to the second argument.
Dropout() - Constructor for class mklab.JGNN.nn.operations.Dropout
 
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages