Index
All Classes and Interfaces|All Packages
D
- data() - Method in class mklab.JGNN.nn.NNOperation
- Dataset - Class in mklab.JGNN.adhoc
-
This class provides the backbone with which to define datasets.
- Dataset() - Constructor for class mklab.JGNN.adhoc.Dataset
- debugging - Variable in class mklab.JGNN.nn.NNOperation
- DenseMatrix - Class in mklab.JGNN.core.matrix
-
Implements a dense
Matrix
where all elements are stored in memory. - DenseMatrix(long, long) - Constructor for class mklab.JGNN.core.matrix.DenseMatrix
-
Generates a dense matrix with the designated number of rows and columns.
- DenseTensor - Class in mklab.JGNN.core.tensor
-
This class provides a dense
Tensor
that wraps an array of doubles. - DenseTensor() - Constructor for class mklab.JGNN.core.tensor.DenseTensor
- DenseTensor(double...) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
- DenseTensor(long) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
-
Constructs a dense tensor holding zero values.
- DenseTensor(String) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
-
Reconstructs a serialized Tensor (i.e.
- DenseTensor(Iterator<? extends Number>) - Constructor for class mklab.JGNN.core.tensor.DenseTensor
-
Constructs a dense tensor from an iterator holding that outputs its values.
- density() - Method in class mklab.JGNN.core.Tensor
-
Provides the memory allocation density of
Tensor.getNonZeroElements()
compare to the size of the tensor. - derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.Accuracy
- derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.BinaryCrossEntropy
- derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.CategoricalCrossEntropy
- derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.Loss
-
Provides the derivative of a loss function at its evaluation point.
- derivative(Tensor, Tensor) - Method in class mklab.JGNN.nn.loss.report.VerboseLoss
- describe() - Method in class mklab.JGNN.adhoc.ModelBuilder
-
Creates a description of the builded model's internal execution graph.
- describe() - Method in class mklab.JGNN.core.Matrix
- describe() - Method in class mklab.JGNN.core.matrix.SparseMatrix
- describe() - Method in class mklab.JGNN.core.matrix.SparseSymmetric
-
Deprecated.
- describe() - Method in class mklab.JGNN.core.matrix.TransposedMatrix
- describe() - Method in class mklab.JGNN.core.Tensor
-
Describes the type, size and other characteristics of the tensor.
- describe() - Method in class mklab.JGNN.nn.NNOperation
-
Retrieves a concise description of the operation that shows metadata and potential data descriptions processed by the current thread.
- determineZeroCopy(Matrix, long, long, long) - Method in class mklab.JGNN.core.Matrix
- determineZeroCopy(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Automatically determines which between the tensor and a competitor is chosen create zero copies for two-argument operations.
- Diagonal - Class in mklab.JGNN.core.matrix
-
Implements a square matrix whose diagonal elements are determined by the correspond values of an underlying tensor and off-diagonal elements are zero.
- Diagonal(Tensor) - Constructor for class mklab.JGNN.core.matrix.Diagonal
- Diagonal.Diagonal1DIterator - Class in mklab.JGNN.core.matrix
- Diagonal.Diagonal2DIterator - Class in mklab.JGNN.core.matrix
- Diagonal1DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.Diagonal.Diagonal1DIterator
- Diagonal2DIterator(Iterator<Long>) - Constructor for class mklab.JGNN.core.matrix.Diagonal.Diagonal2DIterator
- Distribution - Interface in mklab.JGNN.core
-
This interface abstracts a probability distribution that can be passed to
Tensor.setToRandom(Distribution)
for random tensor initialization. - dot(Tensor) - Method in class mklab.JGNN.core.Tensor
-
Performs the dot product between this and another tensor.
- dot(Tensor, Tensor) - Method in class mklab.JGNN.core.Tensor
-
Performs the triple dot product between this and two other tensors.
- downloadIfNotExists(String, String) - Method in class mklab.JGNN.adhoc.Dataset
- Dropout - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that converts its first argument to aColumnRepetition
matrix with a number of columns equal to the second argument. - Dropout() - Constructor for class mklab.JGNN.nn.operations.Dropout
All Classes and Interfaces|All Packages