Index
All Classes and Interfaces|All Packages
M
- main(String[]) - Static method in class Benchmarks
- main(String[]) - Static method in class classification.LogisticRegression
- main(String[]) - Static method in class classification.MLP
- main(String[]) - Static method in class graphClassification.MeanPooling
- main(String[]) - Static method in class graphClassification.MessageSortPooling
- main(String[]) - Static method in class graphClassification.SortPooling
- main(String[]) - Static method in class graphClassification.SortPoolingManual
- main(String[]) - Static method in class nodeClassification.APPNP
- main(String[]) - Static method in class nodeClassification.GAT
- main(String[]) - Static method in class nodeClassification.GCN
- main(String[]) - Static method in class nodeClassification.GCNII
- main(String[]) - Static method in class nodeClassification.HetGCN
- main(String[]) - Static method in class nodeClassification.MessagePassing
- main(String[]) - Static method in class nodeClassification.Scripting
- main(String[]) - Static method in class primitives.ModelBuilderInternals
- main(String[]) - Static method in class primitives.SimpleNetwork
- main(String[]) - Static method in class tutorial.Learning
- main(String[]) - Static method in class tutorial.NN
- main(String[]) - Static method in class tutorial.Quickstart
- matmul(Matrix) - Method in class mklab.JGNN.core.matrix.DenseMatrix
- matmul(Matrix) - Method in class mklab.JGNN.core.Matrix
-
Performs the matrix multiplication of
this*withand the recipient. - matmul(Matrix) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.matrix.DenseMatrix
- matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.Matrix
-
Can be used to perform fast computation of the matrix multiplications
this*with,
this.transposed()*with
this*with.transposed(),
this.transposed()*with.transposed()
while avoiding the overhead of callingMatrix.transposed(). - matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- MatMul - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperationthat multiplies its two matrix inputs. - MatMul() - Constructor for class mklab.JGNN.nn.operations.MatMul
- Matrix - Class in mklab.JGNN.core
-
This class provides an abstract implementation of Matrix functionalities.
- Matrix(long, long) - Constructor for class mklab.JGNN.core.Matrix
- MatrixTest - Class in mklab.JGNN.core
- MatrixTest() - Constructor for class mklab.JGNN.core.MatrixTest
- max() - Method in class mklab.JGNN.core.Tensor
-
Computes the maximum tensor element.
- Max - Class in mklab.JGNN.nn.pooling
-
Implements a
NNOperationthat performs row-wise or column-wise maximum reduction on vector tensors or matrices. - Max() - Constructor for class mklab.JGNN.nn.pooling.Max
- Max(boolean) - Constructor for class mklab.JGNN.nn.pooling.Max
- Mean - Class in mklab.JGNN.nn.pooling
-
Implements a
NNOperationthat performs row-wise or column-wise mean reduction on vector tensors or matrices. - Mean() - Constructor for class mklab.JGNN.nn.pooling.Mean
- Mean(boolean) - Constructor for class mklab.JGNN.nn.pooling.Mean
- MeanPooling - Class in graphClassification
- MeanPooling() - Constructor for class graphClassification.MeanPooling
- Memory - Class in mklab.JGNN.core
-
A memory management system for thread-safe allocation and release of arrays of doubles.
- Memory() - Constructor for class mklab.JGNN.core.Memory
- Memory.Scope - Class in mklab.JGNN.core
- merge(Tensor, Matrix, long, long, long) - Method in class mklab.JGNN.nn.pooling.Sort
- MessagePassing - Class in nodeClassification
-
Demonstrates classification with a message passing architecture.
- MessagePassing() - Constructor for class nodeClassification.MessagePassing
- MessageSortPooling - Class in graphClassification
- MessageSortPooling() - Constructor for class graphClassification.MessageSortPooling
- min() - Method in class mklab.JGNN.core.Tensor
-
Computes the minimum tensor element.
- mklab.JGNN.adhoc - package mklab.JGNN.adhoc
-
Contains classes that simplify data loading, model building, and training.
- mklab.JGNN.adhoc.datasets - package mklab.JGNN.adhoc.datasets
-
Contains datasets for out-of-the-box experimentation.
- mklab.JGNN.adhoc.parsers - package mklab.JGNN.adhoc.parsers
-
Contains model builders that parse expression of the Neuralang scripting language to simplify mathematical parts of the definitions.
- mklab.JGNN.adhoc.train - package mklab.JGNN.adhoc.train
-
Contains model training strategies that correspond to different predictive tasks.
- mklab.JGNN.core - package mklab.JGNN.core
-
Contains base numerical data classes, as well as supporting abstract classes.
- mklab.JGNN.core.distribution - package mklab.JGNN.core.distribution
-
Contains data distributions that produce one numerical value and can be used for tensor value initialization.
- mklab.JGNN.core.empty - package mklab.JGNN.core.empty
-
Contains empty extensions of datatypes that hold only dimension names and sizes but no ddata.
- mklab.JGNN.core.matrix - package mklab.JGNN.core.matrix
-
Contains implementations of matrix classes, of transparent access to parts of these classes, and of column/row repetitions that broadcast vectors into matrices.
- mklab.JGNN.core.tensor - package mklab.JGNN.core.tensor
-
Contains implementations of tensor classes, as well as transparent access to parts of these classes.
- mklab.JGNN.core.util - package mklab.JGNN.core.util
-
Contains utility functions that are employed internally, mainly optimized 1D and 2D iterators.
- mklab.JGNN.nn - package mklab.JGNN.nn
-
Implements neural networks components that are combined to define GNNs or other types of machine learning models.
- mklab.JGNN.nn.activations - package mklab.JGNN.nn.activations
-
Implements activations function to be used as model operations.
- mklab.JGNN.nn.initializers - package mklab.JGNN.nn.initializers
-
Implements initializers to be applied on
Modelparameters to stochastically induce some desired property at the first training epoch. - mklab.JGNN.nn.inputs - package mklab.JGNN.nn.inputs
-
Contains various types of neural architecture inputs.
- mklab.JGNN.nn.loss - package mklab.JGNN.nn.loss
-
Contains classes for instantiating loss function.
- mklab.JGNN.nn.loss.report - package mklab.JGNN.nn.loss.report
-
Contains losses that wrap other losses and augment their numeric computations with live reporting of the training status.
- mklab.JGNN.nn.operations - package mklab.JGNN.nn.operations
-
Contains popular neural network and GNN operations.
- mklab.JGNN.nn.optimizers - package mklab.JGNN.nn.optimizers
-
Contains optimizers that can be used to update training losses.
- mklab.JGNN.nn.pooling - package mklab.JGNN.nn.pooling
-
Contains pooling/reduction operations that reduce the dimensions of inputs.
- MLP - Class in classification
-
Demonstrates classification with a two-layer perceptron
- MLP() - Constructor for class classification.MLP
- Model - Class in mklab.JGNN.nn
-
This class is a way to organize
NNOperationtrees into trainable machine learning models. - Model() - Constructor for class mklab.JGNN.nn.Model
-
Deprecated.Prefer using model builders for symbolic model definitions.
- ModelBuilder - Class in mklab.JGNN.adhoc
-
This class and subclasses can be used to create
Modelinstances by automatically creating and managingNNOperationinstances based on textual descriptions. - ModelBuilder() - Constructor for class mklab.JGNN.adhoc.ModelBuilder
- ModelBuilder(Model) - Constructor for class mklab.JGNN.adhoc.ModelBuilder
- ModelBuilderInternals - Class in primitives
-
Demonstrates model builder internal node access that allows training with a symbolically defined loss function.
- ModelBuilderInternals() - Constructor for class primitives.ModelBuilderInternals
- ModelTraining - Class in mklab.JGNN.adhoc
-
This is a helper class that automates the definition of training processes of
Modelinstances by defining the number of epochs, loss functions, number of batches and the ability to useThreadPoolfor parallelized batch computations. - ModelTraining() - Constructor for class mklab.JGNN.adhoc.ModelTraining
- multiply(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
- multiply(double) - Method in class mklab.JGNN.core.Tensor
- multiply(double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- multiply(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- multiply(Tensor) - Method in class mklab.JGNN.core.Tensor
- multiply(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- Multiply - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperationthat multiplies its two inputs element-by-element. - Multiply() - Constructor for class mklab.JGNN.nn.operations.Multiply
All Classes and Interfaces|All Packages