Index
All Classes and Interfaces|All Packages
M
- main(String[]) - Static method in class Benchmarks
- main(String[]) - Static method in class classification.LogisticRegression
- main(String[]) - Static method in class classification.MLP
- main(String[]) - Static method in class graphClassification.MeanPooling
- main(String[]) - Static method in class graphClassification.MessageSortPooling
- main(String[]) - Static method in class graphClassification.SortPooling
- main(String[]) - Static method in class graphClassification.SortPoolingManual
- main(String[]) - Static method in class nodeClassification.APPNP
- main(String[]) - Static method in class nodeClassification.GAT
- main(String[]) - Static method in class nodeClassification.GCN
- main(String[]) - Static method in class nodeClassification.GCNII
- main(String[]) - Static method in class nodeClassification.HetGCN
- main(String[]) - Static method in class nodeClassification.MessagePassing
- main(String[]) - Static method in class nodeClassification.Scripting
- main(String[]) - Static method in class primitives.ModelBuilderInternals
- main(String[]) - Static method in class primitives.SimpleNetwork
- main(String[]) - Static method in class tutorial.Learning
- main(String[]) - Static method in class tutorial.NN
- main(String[]) - Static method in class tutorial.Quickstart
- matmul(Matrix) - Method in class mklab.JGNN.core.matrix.DenseMatrix
- matmul(Matrix) - Method in class mklab.JGNN.core.Matrix
-
Performs the matrix multiplication of
this*with
and the recipient. - matmul(Matrix) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.matrix.DenseMatrix
- matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.Matrix
-
Can be used to perform fast computation of the matrix multiplications
this*with
,
this.transposed()*with
this*with.transposed()
,
this.transposed()*with.transposed()
while avoiding the overhead of callingMatrix.transposed()
. - matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
- MatMul - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that multiplies its two matrix inputs. - MatMul() - Constructor for class mklab.JGNN.nn.operations.MatMul
- Matrix - Class in mklab.JGNN.core
-
This class provides an abstract implementation of Matrix functionalities.
- Matrix(long, long) - Constructor for class mklab.JGNN.core.Matrix
- MatrixTest - Class in mklab.JGNN.core
- MatrixTest() - Constructor for class mklab.JGNN.core.MatrixTest
- max() - Method in class mklab.JGNN.core.Tensor
-
Computes the maximum tensor element.
- Max - Class in mklab.JGNN.nn.pooling
-
Implements a
NNOperation
that performs row-wise or column-wise maximum reduction on vector tensors or matrices. - Max() - Constructor for class mklab.JGNN.nn.pooling.Max
- Max(boolean) - Constructor for class mklab.JGNN.nn.pooling.Max
- Mean - Class in mklab.JGNN.nn.pooling
-
Implements a
NNOperation
that performs row-wise or column-wise mean reduction on vector tensors or matrices. - Mean() - Constructor for class mklab.JGNN.nn.pooling.Mean
- Mean(boolean) - Constructor for class mklab.JGNN.nn.pooling.Mean
- MeanPooling - Class in graphClassification
- MeanPooling() - Constructor for class graphClassification.MeanPooling
- Memory - Class in mklab.JGNN.core
-
A memory management system for thread-safe allocation and release of arrays of doubles.
- Memory() - Constructor for class mklab.JGNN.core.Memory
- Memory.Scope - Class in mklab.JGNN.core
- merge(Tensor, Matrix, long, long, long) - Method in class mklab.JGNN.nn.pooling.Sort
- MessagePassing - Class in nodeClassification
-
Demonstrates classification with a message passing architecture.
- MessagePassing() - Constructor for class nodeClassification.MessagePassing
- MessageSortPooling - Class in graphClassification
- MessageSortPooling() - Constructor for class graphClassification.MessageSortPooling
- min() - Method in class mklab.JGNN.core.Tensor
-
Computes the minimum tensor element.
- mklab.JGNN.adhoc - package mklab.JGNN.adhoc
-
Contains classes that simplify data loading, model building, and training.
- mklab.JGNN.adhoc.datasets - package mklab.JGNN.adhoc.datasets
-
Contains datasets for out-of-the-box experimentation.
- mklab.JGNN.adhoc.parsers - package mklab.JGNN.adhoc.parsers
-
Contains model builders that parse expression of the Neuralang scripting language to simplify mathematical parts of the definitions.
- mklab.JGNN.adhoc.train - package mklab.JGNN.adhoc.train
-
Contains model training strategies that correspond to different predictive tasks.
- mklab.JGNN.core - package mklab.JGNN.core
-
Contains base numerical data classes, as well as supporting abstract classes.
- mklab.JGNN.core.distribution - package mklab.JGNN.core.distribution
-
Contains data distributions that produce one numerical value and can be used for tensor value initialization.
- mklab.JGNN.core.empty - package mklab.JGNN.core.empty
-
Contains empty extensions of datatypes that hold only dimension names and sizes but no ddata.
- mklab.JGNN.core.matrix - package mklab.JGNN.core.matrix
-
Contains implementations of matrix classes, of transparent access to parts of these classes, and of column/row repetitions that broadcast vectors into matrices.
- mklab.JGNN.core.tensor - package mklab.JGNN.core.tensor
-
Contains implementations of tensor classes, as well as transparent access to parts of these classes.
- mklab.JGNN.core.util - package mklab.JGNN.core.util
-
Contains utility functions that are employed internally, mainly optimized 1D and 2D iterators.
- mklab.JGNN.nn - package mklab.JGNN.nn
-
Implements neural networks components that are combined to define GNNs or other types of machine learning models.
- mklab.JGNN.nn.activations - package mklab.JGNN.nn.activations
-
Implements activations function to be used as model operations.
- mklab.JGNN.nn.initializers - package mklab.JGNN.nn.initializers
-
Implements initializers to be applied on
Model
parameters to stochastically induce some desired property at the first training epoch. - mklab.JGNN.nn.inputs - package mklab.JGNN.nn.inputs
-
Contains various types of neural architecture inputs.
- mklab.JGNN.nn.loss - package mklab.JGNN.nn.loss
-
Contains classes for instantiating loss function.
- mklab.JGNN.nn.loss.report - package mklab.JGNN.nn.loss.report
-
Contains losses that wrap other losses and augment their numeric computations with live reporting of the training status.
- mklab.JGNN.nn.operations - package mklab.JGNN.nn.operations
-
Contains popular neural network and GNN operations.
- mklab.JGNN.nn.optimizers - package mklab.JGNN.nn.optimizers
-
Contains optimizers that can be used to update training losses.
- mklab.JGNN.nn.pooling - package mklab.JGNN.nn.pooling
-
Contains pooling/reduction operations that reduce the dimensions of inputs.
- MLP - Class in classification
-
Demonstrates classification with a two-layer perceptron
- MLP() - Constructor for class classification.MLP
- Model - Class in mklab.JGNN.nn
-
This class is a way to organize
NNOperation
trees into trainable machine learning models. - Model() - Constructor for class mklab.JGNN.nn.Model
-
Deprecated.Prefer using model builders for symbolic model definitions.
- ModelBuilder - Class in mklab.JGNN.adhoc
-
This class and subclasses can be used to create
Model
instances by automatically creating and managingNNOperation
instances based on textual descriptions. - ModelBuilder() - Constructor for class mklab.JGNN.adhoc.ModelBuilder
- ModelBuilder(Model) - Constructor for class mklab.JGNN.adhoc.ModelBuilder
- ModelBuilderInternals - Class in primitives
-
Demonstrates model builder internal node access that allows training with a symbolically defined loss function.
- ModelBuilderInternals() - Constructor for class primitives.ModelBuilderInternals
- ModelTraining - Class in mklab.JGNN.adhoc
-
This is a helper class that automates the definition of training processes of
Model
instances by defining the number of epochs, loss functions, number of batches and the ability to useThreadPool
for parallelized batch computations. - ModelTraining() - Constructor for class mklab.JGNN.adhoc.ModelTraining
- multiply(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
- multiply(double) - Method in class mklab.JGNN.core.Tensor
- multiply(double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- multiply(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
- multiply(Tensor) - Method in class mklab.JGNN.core.Tensor
- multiply(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
- Multiply - Class in mklab.JGNN.nn.operations
-
Implements a
NNOperation
that multiplies its two inputs element-by-element. - Multiply() - Constructor for class mklab.JGNN.nn.operations.Multiply
All Classes and Interfaces|All Packages