Index

A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages

M

main(String[]) - Static method in class Benchmarks
 
main(String[]) - Static method in class classification.LogisticRegression
 
main(String[]) - Static method in class classification.MLP
 
main(String[]) - Static method in class graphClassification.MeanPooling
 
main(String[]) - Static method in class graphClassification.MessageSortPooling
 
main(String[]) - Static method in class graphClassification.SortPooling
 
main(String[]) - Static method in class graphClassification.SortPoolingManual
 
main(String[]) - Static method in class nodeClassification.APPNP
 
main(String[]) - Static method in class nodeClassification.GAT
 
main(String[]) - Static method in class nodeClassification.GCN
 
main(String[]) - Static method in class nodeClassification.GCNII
 
main(String[]) - Static method in class nodeClassification.HetGCN
 
main(String[]) - Static method in class nodeClassification.MessagePassing
 
main(String[]) - Static method in class nodeClassification.Scripting
 
main(String[]) - Static method in class primitives.ModelBuilderInternals
 
main(String[]) - Static method in class primitives.SimpleNetwork
 
main(String[]) - Static method in class tutorial.Learning
 
main(String[]) - Static method in class tutorial.NN
 
main(String[]) - Static method in class tutorial.Quickstart
 
matmul(Matrix) - Method in class mklab.JGNN.core.matrix.DenseMatrix
 
matmul(Matrix) - Method in class mklab.JGNN.core.Matrix
Performs the matrix multiplication of this*with and the recipient.
matmul(Matrix) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
 
matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.matrix.DenseMatrix
 
matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.Matrix
Can be used to perform fast computation of the matrix multiplications
this*with,
this.transposed()*with
this*with.transposed(),
this.transposed()*with.transposed()
while avoiding the overhead of calling Matrix.transposed().
matmul(Matrix, boolean, boolean) - Method in class mklab.JGNN.core.matrix.VectorizedMatrix
 
MatMul - Class in mklab.JGNN.nn.operations
Implements a NNOperation that multiplies its two matrix inputs.
MatMul() - Constructor for class mklab.JGNN.nn.operations.MatMul
 
Matrix - Class in mklab.JGNN.core
This class provides an abstract implementation of Matrix functionalities.
Matrix(long, long) - Constructor for class mklab.JGNN.core.Matrix
 
MatrixTest - Class in mklab.JGNN.core
 
MatrixTest() - Constructor for class mklab.JGNN.core.MatrixTest
 
max() - Method in class mklab.JGNN.core.Tensor
Computes the maximum tensor element.
Max - Class in mklab.JGNN.nn.pooling
Implements a NNOperation that performs row-wise or column-wise maximum reduction on vector tensors or matrices.
Max() - Constructor for class mklab.JGNN.nn.pooling.Max
 
Max(boolean) - Constructor for class mklab.JGNN.nn.pooling.Max
 
Mean - Class in mklab.JGNN.nn.pooling
Implements a NNOperation that performs row-wise or column-wise mean reduction on vector tensors or matrices.
Mean() - Constructor for class mklab.JGNN.nn.pooling.Mean
 
Mean(boolean) - Constructor for class mklab.JGNN.nn.pooling.Mean
 
MeanPooling - Class in graphClassification
 
MeanPooling() - Constructor for class graphClassification.MeanPooling
 
Memory - Class in mklab.JGNN.core
A memory management system for thread-safe allocation and release of arrays of doubles.
Memory() - Constructor for class mklab.JGNN.core.Memory
 
Memory.Scope - Class in mklab.JGNN.core
 
merge(Tensor, Matrix, long, long, long) - Method in class mklab.JGNN.nn.pooling.Sort
 
MessagePassing - Class in nodeClassification
Demonstrates classification with a message passing architecture.
MessagePassing() - Constructor for class nodeClassification.MessagePassing
 
MessageSortPooling - Class in graphClassification
 
MessageSortPooling() - Constructor for class graphClassification.MessageSortPooling
 
min() - Method in class mklab.JGNN.core.Tensor
Computes the minimum tensor element.
mklab.JGNN.adhoc - package mklab.JGNN.adhoc
Contains classes that simplify data loading, model building, and training.
mklab.JGNN.adhoc.datasets - package mklab.JGNN.adhoc.datasets
Contains datasets for out-of-the-box experimentation.
mklab.JGNN.adhoc.parsers - package mklab.JGNN.adhoc.parsers
Contains model builders that parse expression of the Neuralang scripting language to simplify mathematical parts of the definitions.
mklab.JGNN.adhoc.train - package mklab.JGNN.adhoc.train
Contains model training strategies that correspond to different predictive tasks.
mklab.JGNN.core - package mklab.JGNN.core
Contains base numerical data classes, as well as supporting abstract classes.
mklab.JGNN.core.distribution - package mklab.JGNN.core.distribution
Contains data distributions that produce one numerical value and can be used for tensor value initialization.
mklab.JGNN.core.empty - package mklab.JGNN.core.empty
Contains empty extensions of datatypes that hold only dimension names and sizes but no ddata.
mklab.JGNN.core.matrix - package mklab.JGNN.core.matrix
Contains implementations of matrix classes, of transparent access to parts of these classes, and of column/row repetitions that broadcast vectors into matrices.
mklab.JGNN.core.tensor - package mklab.JGNN.core.tensor
Contains implementations of tensor classes, as well as transparent access to parts of these classes.
mklab.JGNN.core.util - package mklab.JGNN.core.util
Contains utility functions that are employed internally, mainly optimized 1D and 2D iterators.
mklab.JGNN.nn - package mklab.JGNN.nn
Implements neural networks components that are combined to define GNNs or other types of machine learning models.
mklab.JGNN.nn.activations - package mklab.JGNN.nn.activations
Implements activations function to be used as model operations.
mklab.JGNN.nn.initializers - package mklab.JGNN.nn.initializers
Implements initializers to be applied on Model parameters to stochastically induce some desired property at the first training epoch.
mklab.JGNN.nn.inputs - package mklab.JGNN.nn.inputs
Contains various types of neural architecture inputs.
mklab.JGNN.nn.loss - package mklab.JGNN.nn.loss
Contains classes for instantiating loss function.
mklab.JGNN.nn.loss.report - package mklab.JGNN.nn.loss.report
Contains losses that wrap other losses and augment their numeric computations with live reporting of the training status.
mklab.JGNN.nn.operations - package mklab.JGNN.nn.operations
Contains popular neural network and GNN operations.
mklab.JGNN.nn.optimizers - package mklab.JGNN.nn.optimizers
Contains optimizers that can be used to update training losses.
mklab.JGNN.nn.pooling - package mklab.JGNN.nn.pooling
Contains pooling/reduction operations that reduce the dimensions of inputs.
MLP - Class in classification
Demonstrates classification with a two-layer perceptron
MLP() - Constructor for class classification.MLP
 
Model - Class in mklab.JGNN.nn
This class is a way to organize NNOperation trees into trainable machine learning models.
Model() - Constructor for class mklab.JGNN.nn.Model
Deprecated.
Prefer using model builders for symbolic model definitions.
ModelBuilder - Class in mklab.JGNN.adhoc
This class and subclasses can be used to create Model instances by automatically creating and managing NNOperation instances based on textual descriptions.
ModelBuilder() - Constructor for class mklab.JGNN.adhoc.ModelBuilder
 
ModelBuilder(Model) - Constructor for class mklab.JGNN.adhoc.ModelBuilder
 
ModelBuilderInternals - Class in primitives
Demonstrates model builder internal node access that allows training with a symbolically defined loss function.
ModelBuilderInternals() - Constructor for class primitives.ModelBuilderInternals
 
ModelTraining - Class in mklab.JGNN.adhoc
This is a helper class that automates the definition of training processes of Model instances by defining the number of epochs, loss functions, number of batches and the ability to use ThreadPool for parallelized batch computations.
ModelTraining() - Constructor for class mklab.JGNN.adhoc.ModelTraining
 
multiply(double) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
multiply(double) - Method in class mklab.JGNN.core.Tensor
 
multiply(double) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
multiply(Tensor) - Method in class mklab.JGNN.core.tensor.DenseTensor
 
multiply(Tensor) - Method in class mklab.JGNN.core.Tensor
 
multiply(Tensor) - Method in class mklab.JGNN.core.tensor.VectorizedTensor
 
Multiply - Class in mklab.JGNN.nn.operations
Implements a NNOperation that multiplies its two inputs element-by-element.
Multiply() - Constructor for class mklab.JGNN.nn.operations.Multiply
 
A B C D E F G H I K L M N O P Q R S T U V W X Z 
All Classes and Interfaces|All Packages